<h2>
Option 2 is the correct answer.</h2>
Explanation:
Elastic collision means kinetic energy and momentum are conserved.
Let the mass of object be m and M.
Initial velocity object 1 be u₁, object 2 be u₂
Final velocity object 1 be v₁, object 2 be v₂
Initial momentum = m x u₁ + M x u₂ = 3 x 8 + M x 0 = 24 kgm/s
Final momentum = m x v₁ + M x v₂ = 3 x v₁ + M x 6 = 3v₁ + 6M
Initial kinetic energy = 0.5 m x u₁² + 0.5 M x u₂² = 0.5 x 3 x 8² + 0.5 x M x 0² = 96 J
Final kinetic energy = 0.5 m x v₁² + 0.5 M x v₂² = 0.5 x 3 x v₁² + 0.5 x M x 6² = 1.5 v₁² + 18 M
We have
Initial momentum = Final momentum
24 = 3v₁ + 6M
v₁ + 2M = 8
v₁ = 8 - 2M
Initial kinetic energy = Final kinetic energy
96 = 1.5 v₁² + 18 M
v₁² + 12 M = 64
Substituting v₁ = 8 - 2M
(8 - 2M)² + 12 M = 64
64 - 32M + 4M² + 12 M = 64
4M² = 20 M
M = 5 kg
Option 2 is the correct answer.
Most likely, the light wave will be absorbed by the wall. Without any information as to the size and color of the wall, the location and size of the hole, or the location of the light wave, this is a generalized probability problem. For all of the places the light could be, it's more likely that it hits the wall than the hole (if the hole is less than 50% of the area of the wall).
Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m