Answer: At least one of his parents had brown eyes
Explanation: whoever had the brown eyes he got more genetics from them when it came to his eyes
<h2>Answer: Medium
</h2>
The medium is the main factor that differentiates a mechanical wave from an electromagnetic wave, since the first can not propagate without its existence, while the second can propagate regardless of whether the medium exists or not.
In addition, it is the medium that will define, the propagation speed of the wave, according to its specific physical characteristics.
Therefore, the <u>correct answer</u> is a.
Answer:
this answer your question
The volume of a gas will increase by ten times if the temperature is increased by ten times.
<h3>Relationship between the volume of a gas and temperature</h3>
The relationship between the volume of a gas and its temperature is explained in Charles' law of gases which states that:
- The volume of a fixed mass of gas is directly proportional to its temperature provided the pressure of the gas is kept constant.
This means that if the temperature of a gas is increased by any given factor, the volume increases by the same factor proportionally.
Therefore, if the volume of a gas will increase by ten times if the temperature is increased by ten times.
Learn more about gas volume and temperature at: brainly.com/question/18706379
Answer:
299.51 m/s
Explanation:
m = mass of the bullet = 45 g = 0.045 kg
M = mass of the block = 1.55 kg
v = muzzle speed of the bullet
V = speed of bullet-block combination after the collision
μ = Coefficient of friction between the block and the surface = 0.28
d = distance traveled by the block = 13 m
V' = final speed of the bullet-block combination = 0 m/s
acceleration of the bullet-block combination due to frictional force is given as
a = - μg
using the kinematics equation
V'² = V² + 2 a d
0² = V² + 2 (- μg) d
0 = V² - 2 (μg) d
0 = V² - 2 (0.28) (9.8) (13)
V = 8.45 m/s
Using conservation of momentum for collision between bullet and block
mv = (M + m) V
(0.045) v = (1.55 + 0.045) (8.45)
v = 299.51 m/s