6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
Explanation:
Given equation;
NaC₂H₃O₂ + Fe₂O₃ → Fe(C₂H₃O₂)₃ + Na₂O
To find the coefficient that will balance this we equation, let us set up simple mathematical algebraic expressions that we can readily solve.
Let us have at the back of our mind that, in every chemical reaction, the number of atom is usually conserved.
aNaC₂H₃O₂ + bFe₂O₃ → cFe(C₂H₃O₂)₃ + dNa₂O
a, b, c and d are the coefficients that will balance the equation.
conserving Na; a = 2d
C: 2a = 6c
H: 3a = 9c
O; 2a + 3b = 6c + d
Fe: 2b = c
let a = 1
solving:
2a = 6c
2(1) = 6c
c = 
2b = c
b =
= 
d = 2a + 3b - 6c = 2(1 ) + (3 x
) - (6 x
) = 
Now multiply through by 6
a = 6, b = 1, c = 2 and d = 3
6NaC₂H₃O₂ + Fe₂O₃ → 2Fe(C₂H₃O₂)₃ + 3Na₂O
learn more:
Balanced equation brainly.com/question/9325293
#learnwithBrainly
It it important because it makes people wonder how things work and are made which makes it so they want to move forward with experiments <span />
The enthalpy energy in condensation process is negative because it releases energy
The entropy in will also decreases .
Temperature affected this change because it will now create free energy if added with this result this is the condestion process
Answer:
28.9%
Explanation:
Let's consider the following balanced equation.
2 FeS₂ + 11/2 O₂ ⇒ Fe₂O₃ + 4 SO₂
We can establish the following relations:
- The molar mass of Fe₂O₃ is 159.6 g/mol
- 1 mole of Fe₂O₃ is produced per 2 moles of FeS₂
- 1 mole of Fe is in 1 mole of FeS₂
- The molar mass of Fe is 55.84 g/mol
The amount of Fe in the sample that produced 0.516 g of Fe₂O₃ is:

The percent of Fe in 1.25 g of the ore is:
