Answer:
55,42 J
Explanation:
Since the height of the room is 3.45 m (distance between the floor and the ceiling) the difference between this value and the length of the rope 1.19 m; it will be equal to (3.45-1.19) =2.26 m. If we take as a reference point (Ep=0) the floor of the room, then the potential energy will be equal to Ep = M * g * h, replacing values in this equation (2.5 kg * 9.81 m/s2 * 2.26 m) will be 55,42 (N * m) or Jules.
Answer: For the first part the answer is Radio Waves and the second part’s answer is gamma ray.
In
order to determine the mass of a standard baseball if it had the same density
(mass per unit volume) as a proton or neutron, we first determine the volume of
the baseball. The formula to be used is V_sphere = (4/3)*pi*r^3. In this case, the
radius r can be obtained from the circumference C, C = 2*pi*r. After plugging
in C = 23 cm to the equation, we get r = 3.6066 cm. The volume of the baseball
is then equal to 205.4625 cm^3.
Next,
take note of these necessary information:
Mass of a neutron/proton
= 10^-27 kg
Diameter of a
neutron/proton = 10^-15 m
Radius of a
neutron/proton = [(10^-15)/2]*100 = 5x10^-14 cm
<span>Thus,
the density, M/V of the neutron/proton is equal to 1.9099x10^12 kg/cm^3. Finally,
the mass of the baseball if it was a neutron/proton can be determined by
multiplying the density of the neutron/proton with the volume of the baseball. The
final answer is then a large value of 3.9241x10^14 kg.</span>
Answer:
The correct answer is "21195 N".
Explanation:
The given values are:
Tensile strength,
= 3000 MN/m²
Diameter,
= 3.0 mm
i.e.,
= 3×10⁻³ m
Now,
The maximum load will be:
= 
On substituting the values, we get
= 
= 
= 