Answer:
MgCO₃
Explanation:
From the question given above, we obtained:
MgF₂ + Li₂CO₃ —> __ + 2LiF
The missing part of the equation can be obtained by writing the ionic equation for the reaction between MgF₂ and Li₂CO₃. This is illustrated below:
MgF₂ (aq) —> Mg²⁺ + 2F¯
Li₂CO₃ (aq) —> 2Li⁺ + CO₃²¯
MgF₂ + Li₂CO₃ —>
Mg²⁺ + 2F¯ + 2Li⁺ + CO₃²¯ —> Mg²⁺CO₃²¯ + 2Li⁺F¯
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Now, we share compare the above equation with the one given in the question above to obtain the missing part. This is illustrated below:
MgF₂ + Li₂CO₃ —> __ + 2LiF
MgF₂ + Li₂CO₃ —> MgCO₃ + 2LiF
Therefore, the missing part of the equation is MgCO₃
<span>The correct answer is that an ionic bond forms between charged particles. To form this bond, the particles transfer valence electrons (those in the outermost orbit). Specifically, in ionic bonding, the metal atom loses its electrons (thus becoming positive) and the nonmetal atom gains electrons (thus becoming negative).</span>
the correct answer is.. ill tell you when i search it up gimme 2 seconds
Answer:
(a) sp³ sp³
H₃<u>C</u> - <u>C</u>H₃
(b) sp³ sp²
H₃<u>C</u> - <u>C</u>H = <u>C</u>H₂
sp²
(c) sp³ sp
H₃<u>C</u> - <u>C</u> ≡ <u>C</u> - <u>C</u>H₂OH
sp sp³
(d) sp³ sp²
H₃<u>C</u> - <u>C</u>H=O
Explanation:
Alkanes or the carbons with all the single bonds are sp³ hybridized.
Alkenes or the carbons with double bond(s) are sp² hybridized.
Alkynes or the carbons with triple bond are sp hybridized.
Considering:
(a) H₃C-CH₃ , Both the carbons are bonded by single bond so both the carbons are sp³ hybridized.
Hence,
sp³ sp³
H₃<u>C</u> - <u>C</u>H₃
(b) H₃C-CH=CH₂ , The carbon of the methyl group is sp³ hybridized as it is boned via single bonds. The rest 2 carbons are sp² hybridized because they are bonded by double bond.
Hence,
sp³ sp²
H₃<u>C</u> - <u>C</u>H = <u>C</u>H₂
sp²
(c) H₃C-C≡C-CH₂OH , The carbons of the methyl group and alcoholic group are sp³ hybridized as it is boned via single bonds. The rest 2 carbons are sp hybridized because they are bonded by triple bond.
Hence,
sp³ sp
H₃<u>C</u> - <u>C</u> ≡ <u>C</u> - <u>C</u>H₂OH
sp sp³
(d)CH₃CH=O, The carbon of the methyl group is sp³ hybridized as it is boned via single bonds. The other carbon is sp² hybridized because it is bonded by double bond to oxygen.
Hence,
sp³ sp²
H₃<u>C</u> - <u>C</u>H=O
The answer should be A. Because the energy in gasoline is called chemical. When burned it is heat, Then to power a vehicle, it is mechanical energy. But I don't know whether the question wants to mean that the energy in the gasoline will not convert totally to the heat, so it will lose. But if think like this, when heat energy transform to mechanical, it will lose again. So I think the answer is A.