Answer:
(E)56.0 m/s
Explanation:
Height =h=-160 m
Because the wallet moving in downward direction
Time=t=7 s
Final speed of wallet=v=0
We have to find the speed of helicopter ascending at the moment when the passenger let go of the wallet.

Where 
Substitute the values



Option (E) is true
Answer:
I want to help you but i cant.
Explanation:
please provide a screenshot or photos of moons 1-4
The answer to this question is A.
100kg x bicycle speed = 1400 X 2
bicycle speed = 2800/ 100
bicycle speed = 28 m/s
The horizontal force is m*v²/Lh, where m is the total mass. The vertical force is the total weight (233 + 840)N.
<span>Fx = [(233 + 840)/g]*v²/7.5 </span>
<span>v = 32.3*2*π*7.5/60 m/s = 25.37 m/s </span>
<span>The horizontal component of force from the cables is Th + Ti*sin40º and the vertical component of force from the cable is Ta*cos40º </span>
<span>Thh horizontal and vertical forces must balance each other. First the vertical components: </span>
<span>233 + 840 = Ti*cos40º </span>
<span>solve for Ti. (This is the answer to the part b) </span>
<span>Horizontally </span>
<span>[(233 + 840)/g]*v²/7.5 = Th + Ti*sin40º </span>
<span>Solve for Th </span>
<span>Th = [(233 + 840)/g]*v²/7.5 - Ti*sin40º </span>
<span>using v and Ti computed above.</span>