Here we have to get the spin of the other electron present in a orbital which already have an electron which has clockwise spin.
The electron will have anti-clockwise notation.
We know from the Pauli exclusion principle, no two electrons in an atom can have all the four quantum numbers i.e. principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m) and spin quantum number (s) same. The importance of the principle also restrict the possible number of electrons may be present in a particular orbital.
Let assume for an 1s orbital the possible values of four quantum numbers are n = 1, l = 0, m = 0 and s = .
The exclusion principle at once tells us that there may be only two unique sets of these quantum numbers:
1, 0, 0, + and 1, 0, 0, -.
Thus if one electron in an orbital has clockwise spin the other electron will must be have anti-clockwise spin.
T = 14400 s
26.5 x 14400=381600 C
381600/96500=3.95 Faradays
Cu2+ + 2e- = Cu
3.95 faradays ( 1 mol/ 2 Faradays) = 1.97
mass = 1.97 x 63.55 g/mol=125 g
moles Au = 33.1 / 196.967 g/mol=0.168
Au+ + 1e- = Au
0.168 ( 1 Faraday/ 1mol)= 0.168 Faraday
0.168 x 96500=16217 Coulombs
16217 / 5.00=3243 s => 54 min
The new pressure is 81.675 torr
Since temperature and moles are held constant, we use Boyle's Law:
A gas law known as Boyle's law asserts that a gas's pressure is inversely proportional to its volume when it is held at a fixed temperature and of a given mass.
To put it another way, as long as the temperature and volume of the gas remain constant, the pressure and volume of the gas are inversely proportional to one another.
The Anglo-Irish chemist Robert Boyle proposed Boyle's law in the year 1662.
P1V1=P2V2. Simply plug in your values. The units can remain in torr. Converting to atmospheres is not needed.
(242 torr)(27.0 L)=P2(80.0 L)
P2=[(242)(27)]/80 = 81.675 torr
Hence The new pressure is 81.675 torr
Learn more about Boyle's Law here
brainly.com/question/26040104
#SPJ4
Answer:
The correct answer is "The coffee in the jug has more thermal energy than the coffee in the cup".
Explanation:
First I had to look for the problem to know the possible answers.
In this case, the coffee jug has a large amount of coffee at the same temperature. If we analyze that the decanter and the coffee are at the same temperature, we have a homogeneous thermal system. The cup is at room temperature, so by pouring coffee into it, the temperature of the coffee decreases to balance with the temperature of the cup. At this moment, the temperature of the cup-cafe system is lower than the jug-cafe system.
Thermal energy is the part of the internal energy of an equilibrated thermodynamic system that is proportional to its absolute temperature and increases or decreases by energy transfer.
In this way, we can ensure that the thermal energy of the cup-cafe system is lower than that of the jug-cafe system.
Have a nice day!