Answer:
12.3 m/s
Explanation:
The Doppler equation describes how sound frequency depends on relative velocities:
fr = fs (c + vr)/(c + vs),
where fr is the frequency heard by the receiver,
fs is the frequency emitted at the source,
c is the speed of sound,
vr is the velocity of the receiver,
and vs is the velocity of the source.
Note: vr is positive if the receiver is moving towards the source, negative if away.
Conversely, vs is positive if the receiver is moving away from the source, and negative if towards.
Given:
fs = 894 Hz
fr = 926 Hz
c = 343 m/s
vs = 0 m/s
Find: vr
926 = 894 (343 + vr) / (343 + 0)
vr = 12.3
The speed of the car is 12.3 m/s.
Answer:
Electric potential energy at the negative terminal: 
Explanation:
When a particle with charge
travels across a potential difference
, then its change in electric potential energy is

In this problem, we know that:
The particle is an electron, so its charge is

We also know that the positive terminal is at potential

While the negative terminal is at potential

Therefore, the potential difference (final minus initial) is

So, the change in potential energy of the electron is

This means that the electron when it is at the negative terminal has
of energy more than when it is at the positive terminal.
Since the potential at the positive terminal is 0, this means that the electric potential energy of the electron at the negative end is

<span>force applied causes movement of an object in the same direction as the applied force.</span>
Jesus, jesus is always the answer
Gravity is the force that attracts all matter to each other.
Explanation:
Sir Isaac Newton discovered Gravity when he saw a falling apple while thinking about the forces of nature.
Gravity is a fundamental force that causes objects to have weight. Gravity acts on all matter and is a function of both mass and distance. Each object attracts every other object with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between them. The force of attraction is, however, negligible between most objects because of their small size.
Gravitational force is given as:

Where G is gravitational constant and is equal to 6.674×10−11 m³⋅kg⁻¹⋅s⁻²
m₁ and m₂ are the masses of the two objects.
r is the distance between the two objects.
The gravity is what makes an apple fall on the ground and gravity is the force that keeps us on the ground.
Keywords: gravity, Newton, Force, weight
Learn more about gravitational force from brainly.com/question/14321566
#learnwithBrainly