1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amiraneli [1.4K]
3 years ago
9

An aquifer has three different formations. Formation A has a thickness of 8.0 m and hydraulic conductivity of 25.0 m/d. Formatio

n B has a thickness of 2.0 m and a conductivity of 142 m/d. Formation C has a thickness of 34 m and a conductivity of 40 m/d. Assume that each formation is isotropic and homogeneous. Compute both the overall horizontal and vertical conductivities.
Engineering
1 answer:
saveliy_v [14]3 years ago
3 0

Answer:

The horizontal conductivity is 41.9 m/d.

The vertical conductivity is 37.2 m/d.

Explanation:

Given that,

Thickness of A = 8.0 m

Conductivity = 25.0 m/d

Thickness of B = 2.0 m

Conductivity = 142 m/d

Thickness of C = 34 m

Conductivity = 40 m/d

We need to calculate the horizontal conductivity

Using formula of horizontal conductivity

K_{H}=\dfrac{H_{A}K_{A}+H_{A}K_{A}+H_{A}K_{A}}{H_{A}+H_{B}+H_{C}}

Put the value into the formula

K_{H}=\dfrac{8.0\times25+2,0\times142+34\times40}{8.0+2.0+34}

K_{H}=41.9\ m/d

We need to calculate the vertical conductivity

Using formula of vertical conductivity

K_{V}=\dfrac{H_{A}+H_{B}+H_{C}}{\dfrac{H_{A}}{K_{A}}+\dfrac{H_{B}}{K_{B}}+\dfrac{H_{C}}{K_{C}}}

Put the value into the formula

K_{V}=\dfrac{8.0+2.0+34}{\dfrac{8.0}{25}+\dfrac{2.0}{142}+\dfrac{34}{40}}

K_{V}=37.2\ m/d

Hence, The horizontal conductivity is 41.9 m/d.

The vertical conductivity is 37.2 m/d.

You might be interested in
Depending on the model, all-electric vehicles can go about _______ miles on a single charge.
Lera25 [3.4K]

Answer:

D

Explanation:

Most electric vehicles can go at least 100.....few, if any, can go 400 or more on a single charge

6 0
2 years ago
A cylindrical resistor element on a circuit board dissipates 0.6 W of power. The resistor is 1.5 cm long, and has a diameter of
Burka [1]

Answer:

a. 51.84Kj

b. 2808.99 W/m^2

c. 11.75%

Explanation:

Amount of heat this resistor dissipates during a 24-hour period

= amount of power dissipated * time

= 0.6 * 24 = 14.4 Watt hour

(Note 3.6Watt hour = 1Kj )

=14.4*3.6 = 51.84Kj

Heat flux = amount of power dissipated/ surface area

surface area = area of the two circular end  + area of the curve surface

=2*\frac{\pi D^{2} }{4} + \pi DL\\=2*\frac{\pi *(\frac{0.4}{100} )^{2} }{4} + \pi *\frac{0.4}{100} *\frac{1.5}{100}

= 2.136 *10^-4 m^{2}

Heat flux =\frac{0.6}{2.136 * 10^{-4} } = 2808.99 W/m^{2}

fraction of heat dissipated from the top and bottom surface

=\frac{\frac{2*\pi D^{2} }{4} }{\frac{2*\pi D^{2}}{4} + \pi DL } \\\\=\\\frac{\frac{2*\pi *(\frac{0.4}{100} )^{2} }{4} }{\frac{2*\pi *(\frac{0.4}{100}  )^{2} }{4} +\pi *\frac{0.4}{100} *\frac{1.5}{100} } \\\\=\frac{2.51*10^{-5} }{2.136*10^{-4} } \\\\\= 0.1175

=11.75%

8 0
3 years ago
Read 2 more answers
Write using about 10-15 lines for each of the six materials (metals, ceramics, glasses, polymers, composites, and semiconductors
Svetradugi [14.3K]

Answer:

See Answer below- Explanation is the entire answer

Explanation:

Metals:

Properties: Ductile, good heat conductivity, good electrical conductivity, high strength;

Drawbacks: Relatively high weight, reactive with oxygen to create oxides- corrosion is presented;

Examples: steel, aluminum alloys, brass, copper, titanium

Applications: Body of the vehicles, structures in the skyscrapers, cooking pots.

Ceramics:

Properties: Brittle, poor heat conductors, poor electrical conductors, high wear resistance, corrosion resistance;

Drawbacks: Deforms by fracturing, shock resistance is low, no conductivity of electricity;

Examples: concrete, tungsten carbide, diamond

Applications: bricks for constructions, clay pots to keep heat, cutting tools for metals;

Glasses:

Properties: amorphous, transparent, high weight

Drawbacks: poor conductors of heat and electricity; brittle; low shock resistance;

Examples: Silica, lead glass, glaze;

Applications: windows, protection screens;

Polymers:

Properties: low density, recyclable, poor heat and electrical conductors, plastic deformation;

Drawbacks: low strength, low operating temperatures;

Examples: polyethylene, nylon, ABS-plastic, rubber;

Applications: toys, tires, insulation covers for the wires.

Composites:

Properties: high strength to weight ratio, can get combination of properties from the used materials, rarely conductive, good shock resistance;

Drawbacks: high cost, hard to recycle, expensive;

Examples: steel-reinforced concrete, carbon fiber, fiber glass, Nomex, sandwich roof panels;

Applications: buildings, bullet proof vests, body of the Formula 1 cars, rockets, roof panels.

Semiconductors:

Properties: brittle, change conductive behavior under certain scenario, poor heat conductors;

Drawbacks: hard to manufacture, expensive;

Examples: Silicon-based semiconductors, Germanium-based semiconductors, Ga-based semiconductors;

Applications: chips, LED, diodes, transistors, op-amps, microprocessors.

8 0
3 years ago
134a refrigerant enters an adiabatic compressor at 140kPa and -10C, the refrigerant is compressed at 0.5kW up to 700kPa and 60C.
vichka [17]

Answer:

(a) 65.04%

(b) 16.91%

Solution:

As per the question:

At inlet:

Pressure of the compressor, P = 140 kPa

Temperature, T = - 10^{\circ}C = 263 K

Isentropic work, W = 700 kPa

At outlet:

Pressure, P' = 700 kPa

Temperature, T' = 60^{\circ}C = 333 K

Now, from the steam table;

At the inlet , at a P = 700 kPa, T =60^{\circ}C:

h = 243.40 kJ/kg, s = 0.9606 kJ/kg.K

At outlet, at  P = 140 kPa, T =- 10^{\circ}C:

h' = 296.69 kJ/kg, s' = 1.0182 kJ/kg.K

Also in isentropic process, s = s'_{s} and h'_{s} = 278.06 kJ/kg.K at 700kPa

(a) Isentropic efficiency of the compressor, \eta_{s} = \frac{Work\ done\ in\ isentropic\ process}{Actual\ work\ done}

\eta_{s} = \frac{h'_{s} - h}{h' - h} = frac{278.06 - 243.40}{296.69 - 243.40} = 0.6504 = 65.04%

(b) The temperature of the environment, T_{e} = 27^{\circ}C = 273 + 27 = 300 K

Availability at state 1, \Psi = h - T_{e}s = 243.40 - 300\times 0.9606 = - 44.78 kJ/kg

Similarly for state 2, \Psi' = h' - T_{e}s' = 296.69 - 300\times 1.0182 = - 8.77 kJ/kg

Now, the efficiency of the compressor as per the second law;

\eta' = \frac{\Psi' - \Psi}{h' - h} = \frac{- 8.77 - (- 44.78)}{296.69 - 243.40} = 0.6757 = 67.57%

4 0
4 years ago
Explain all the characteristics of computer<br>​
Sedaia [141]
They are as follows-

Speed
Accuracy
Storage
Versatility
Diligence
Automation
Reliability
Power of Remembering

Let us understand each characteristic in brief:-

Speed – Speed of a computer means the time it takes to complete any given task. The computer works at a very lightning speed. For example, a computer takes a second to calculate 3 million calculations rather than a human which takes years. Hence nowadays the speed of the computer is measured in terms of microseconds, Nanoseconds, and even in Pico seconds instead of seconds or milliseconds.


Accuracy – The computers are programmed and designed in such a manner that their results are almost 100% accurate. It performs all the tasks with the same accuracy. There are very few chances of uncertainty in results and even though an error occurs, it can happen either due to wrong input data or unreliable programs by a programmer. Such errors are referred to as Garbage In Garbage Out (GIGO) which means, if you provide wrong instructions to the computer then you get wrong results.


Versatility – Along with being accurate and diligent a computer is also a versatile device. It can perform several types of tasks at a time if they are reduced to a certain set of logical steps. A computer can be used for many purposes at different places such as booking air and rail tickets, weather forecasting, listening to music, and playing games. Also at a time, one can pay his utility bills and can make a monthly budget too. It can prepare documents, data sheets and also can make models of houses, dams, etc.
Diligence – The ability of a computer to perform tasks without getting tired is known as diligence. Computers are highly reliable, they do not get fed up, exhausted, or lack concentration. They can work for hours and hours unlike humans and can give accurate or error-free results. For example, humans will start feeling tired after 2 -3 hours and will lack concentration whereas a computer will keep on working until the results are achieved.
Automation – Automation means working automatically. A computer can work on its own without the intervention of the person using it. Programs can be made for the computer to perform the task and based on the sequence it executes the tasks and gives accurate results. In case an error occurs, it gives error messages too and registers the logs.
Reliability – High reliability of a computer depends on low failure rate and easy maintenance. The results given out by the computer are reliable as the accuracy is almost 100%.
Power of Remembering – The computer has the power of storing data or information for several years. It cannot lose the data on its own. A person can retrieve the data whenever required and the data remains the same after a number of years also. It gives the freedom to the user to decide on how much data to store and how much to remove.
5 0
3 years ago
Other questions:
  • A rigid tank contains an ideal gas at 40°C that is being stirred by a paddle wheel. The paddle wheel does 240 kJ of work on the
    9·1 answer
  • 1) Pareto charts are used to: A) identify inspection points in a process. B) outline production schedules. C) organize errors, p
    6·1 answer
  • Given that the debouncing circuit is somewhat expensive in terms of hardware (2 NAND gates, 2 resistors, and a double-pole, sing
    9·1 answer
  • List two common units of measurement to describe height
    5·2 answers
  • 1. A team of students have designed a battery-powered cooler, which promises to keep beverages at a high-drinkability temperatur
    13·1 answer
  • In a flow over a flat plate, the Stanton number is 0.005: What is the approximate friction factor for this flow a)- 0.01 b)- 0.0
    8·1 answer
  • Por que no puedo rasterizar una capa en Photoshop?
    12·1 answer
  • What quantity measures the effect of change?
    12·2 answers
  • Moonbeam-Musel (MM), a manufacturer of small appliances, has a large injection molding department. Because MM's CEO, Crosscut Sa
    13·1 answer
  • A machine has an efficiency of 15%. If the energy input is 300 joules, how much useful energy is generated?(1 point).
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!