1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
max2010maxim [7]
3 years ago
14

You are working in cooperation with the Public Health department to design an electrostatic trap for particles from auto emissio

ns. In order to verify the correct operation of the trap the design engineers must be able to monitor the speed of the particles before they are trapped. If the particles are moving too fast then they cannot be effectively trapped. The particular detector the engineers want to use is only sensitive to particles moving less than 1000 m/s.The following design parameters are given.
The average emission particle that enters the device is ionized by exposure to ultraviolet radiation resulting in the removal of electrons so that it has a charge of +3.0 x 10-8 C.
The trapping element is a single large square plate negatively charged with a charge density of -8.0 x 10-6 C/m2.
The average particle in the emission stream is moving 900 m/s when it is 15 cm from the plate.
The detector for the particles is located 7.0 cm from the plate.
An average emission particle has a mass of 6.0 x 10-9 kg.

Does this electrostatic trap meets the design parameters?
Physics
1 answer:
Mademuasel [1]3 years ago
6 0

Answer:

Explanation:

Given that:

Charge (q) on the particle = 3 × 10⁻⁸ C

mass (m) of the particle = 6 × 10⁻⁹ kg

at a distance x = 15 cm , the velocity in the plate = 900 m/s²

For the square plate, the surface charged density σ = -8 × 10⁻⁶ C/m²

To start with calculating the electric field as a result of the square plate; we use the formula;

E = \dfrac{\sigma }{2 \varepsilon_o}

E = \dfrac{8 \times 10^{-6} }{2 \times  8.85 \times 10^{-12}}

E = 4.51977 \times 10^5 \ V/m

On the square plate; The electric force F = Eq

F = (4.51977 \times 10^5 \ V/m )(3\times 10^{-8} \ C)

F = 1.3559 \times 10^{-2} \ N

The acceleration a =\dfrac{ F}{m}{

a = \dfrac{1.3559\times 10^{-2} \ N}{6 \times 10^{-9} \ Kg}

a = 2.25988 \times 10^6 \ m/s^2

For the particle, the velocity at distance x = 7 m can be calculated by using the formula:

(\dfrac{1}{2}) mv^2 = \Delta Vq

v^2 = \dfrac{2 Eq}{dm}

v^2 = \dfrac{2 * 4.51977 \times 10^5 \times 3 \times 10^{-8} }{0.07 \times 6\times 10^{-9} }

v^2 = 64568142.86  \ m/s

v =\sqrt{ 64568142.86  \ m/s}

\mathbf{v = 8.035 \times 10^3 \ m/s}

From the calculation, we realize that the charge acting between the particle and the plate is said to be "opposite".

Hence, the force is an attractive force.

Similarly, there is a gradual increase exhibited by the velocity of the particle.

Therefore, the particles get to the detector, but the detector failed to get detect due to the velocity which is greater than 1000 m/s.

You might be interested in
Special relativity can be used to study an object in which frame of reference? A. A frame of reference that has no change in vel
Georgia [21]

Answer:

gangster

Explanation:

sorrynsjajshdnqmanshsha

4 0
3 years ago
Read 2 more answers
This picture represents<br> A: Reflection<br> B: Refraction<br> C: Interference<br> D: Diffraction
-BARSIC- [3]

Answer:

I think it's a because it goes thru it and reflects

5 0
2 years ago
Where and when does the sun stay up for 24hours
DIA [1.3K]

Answer:

abisko, sweden

Explanation:

A bisco is the home to their eyes sky station an epic center for Aurora expanses and northern Sweden. During summer months, the Sun Bates to town and up to 24 hours of sunlight per day.

5 0
3 years ago
The mere exposure effect is
gulaghasi [49]
DescriptionThe mere-exposure effect is a psychological phenomenon by which people tend to develop a preference for things merely because they are familiar with them.
6 0
4 years ago
For a freely falling object weighing 3 kg : A. what is the object's velocity 2 s after it's release. B. What is the kinetic ener
Fed [463]

A) 19.6 m/s (downward)

B) 576 J

C) 19.6 m

D) Velocity: not affected, kinetic energy: doubles, distance: not affected

Explanation:

A)

An object in free fall is acted upon one force only, which is the force of gravity.

Therefore, the motion of an object in free fall is a uniformly accelerated motion (constant acceleration). Therefore, we can find its velocity by applying the following suvat equation:

v=u+at

where:

v is the velocity at time t

u is the initial velocity

a=g=9.8 m/s^2 is the acceleration due to gravity

For the object in this problem, taking downward as positive direction, we have:

u=0 (the object starts from rest)

a=9.8 m/s^2

Therefore, the velocity after

t = 2 s

is:

v=0+(9.8)(2)=19.6 m/s (downward)

B)

The kinetic energy of an object is the energy possessed by the object due to its motion.

It can be calculated using the equation:

KE=\frac{1}{2}mv^2

where

m is the mass of the object

v is the speed of the object

For the object in the problem, at t = 2 s, we have:

m = 3 kg (mass of the object)

v = 19.6 m/s (speed of the object)

Therefore, its kinetic energy is:

KE=\frac{1}{2}(3)(19.6)^2=576 J

C)

In order to find how far the object has fallen, we can use another suvat equation for uniformly accelerated motion:

s=ut+\frac{1}{2}at^2

where

s is the distance covered

u is the initial velocity

t is the time

a is the acceleration

For the object in free fall in this problem, we have:

u = 0 (it starts from rest)

a=g=9.8 m/s^2 (acceleration of gravity)

t = 2 s (time)

Therefore, the distance covered is

s=0+\frac{1}{2}(9.8)(2)^2=19.6 m

D)

Here the mass of the object has been doubled, so now it is

M = 6 kg

For part A) (final velocity of the object), we notice that the equation that we use to find the velocity does not depend at all on the mass of the object. This means that the value of the final velocity is not affected.

For part B) (kinetic energy), we notice that the kinetic energy depends on the mass, so in this case this value has changed.

The new kinetic energy is

KE'=\frac{1}{2}Mv^2

where

M = 6 kg is the new mass

v = 19.6 m/s is the speed

Substituting,

KE'=\frac{1}{2}(6)(19.6)^2=1152 J

And we see that this value is twice the value calculated in part A: so, the kinetic energy has doubled.

Finally, for part c) (distance covered), we see that its equation does not depend on the mass, therefore this value is not affected.

5 0
3 years ago
Other questions:
  • Bromocresol purple is an indicator that changes color over a range from ph=5.2 to ph=6.8. what is ka of bromocresol purple?
    8·2 answers
  • calculate the density of a neutron star with a radius 1.05 x10^4 m, assuming the mass is distributed uniformly. Treat the neutro
    9·1 answer
  • The dark, smooth surface areas of the Moon are known as
    11·1 answer
  • An electron has a velocity of 3.2 x 10^6 m/s. What is its’ momentum? (b) What is its’ wavelength? (c) What other objects/materia
    14·1 answer
  • Your teacher had not exercised since the beginning of distance learning. She decided to exercise by walking in the park. The par
    11·1 answer
  • An Olympic athlete runs a 400 m race in 50 s. What is her average speed?
    10·1 answer
  • Osteoporosis is a condition that makes bones more
    12·1 answer
  • A voltage of 75 V is placed across a 150 Ω resistor. What is the current through the resistor?
    12·1 answer
  • Describe three ways that solar energy can be used
    9·1 answer
  • 3. What is the second lesson from this study Ms. Pearson mentions?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!