I don't think that 4m has anything to do with the problem.
anyway. here.
A___________________B_______C
where A is the point that the train was released.
B is where the wheel started to stick
C is where it stopped
From A to B, v=2.5m/s, it takes 2s to go A to B so t=2
AB= v*t = 2.5 * 2 = 5m
The train comes to a stop 7.7 m from the point at which it was released so AC=7.7m
then BC= AC-AB = 7.7-5 = 2.7m
now consider BC
v^2=u^2+2as
where u is initial speed, in this case is 2.5m/s
v is final speed, train stop at C so final speed=0, so v=0
a is acceleration
s is displacement, which is BC=2.7m
substitute all the number into equation, we have
0^2 = 2.5^2 + 2*a*2.7
0 = 6.25 + 5.4a
a = -6.25/5.4 = -1.157
so acceleration is -1.157m/(s^2)
Answer: 0.091 m
Explanation:
r = 1/B * √(2mV/e), where
r = radius of their circular path
B = magnitude of magnetic field = 1.29 T
m = mass of Uranium -238 ion = 238 * amu = 238 * 1.6*10^-27 kg
V = potential difference = 2.9 kV
e = charge of the Uranium -238 ion = 1.6*10^-19 C
r = 1/1.29 * √[(2 * 238 * 1.6*10^-27 * 2900) / 1.6*10^-19]
r = 1/1.29 * √(2.21*10^-21 / 1.6*10^-19)
r = 1/1.29 * √0.0138
r = 1/1.29 * 0.117
r = 0.091 m
Therefore, the radius of their circular path is 0.091 m
Supposing the carousel is rotating with constant speed, the movement is uniform angular motion.
Answer:
see below
Explanation:
First, the obvious, as you press the gas pedal harder the acceleration goes up as well. Conversely, is you do not press the pedal, you will not accelerate. This determines that is I press the gas pedal, it will CAUSE the car to accelerate. This proves causation.
Now, correlation. The definition of correlation in statistics is any statistical relationship between two random variables or data. This simply means that these two events are connected to one another. A POSITIVE correlation is when two correlated events move in the same direction as one another. I have added a graph to help visualize this. In this problem as the gas is pressed harder, the acceleration increases. If the pressure on the pedal was decreased, then the acceleration also decreases. If the pressure on the pedal is constant, the the acceleration is constant.
I hope this helps!