Answer:
a = 0.7267
, acceleration is positive therefore the speed is increasing
Explanation:
The definition of acceleration is
a = dv / dt
they give us the function of speed
v = - (t-1) sin (t² / 2)
a = - sin (t²/2) - (t-1) cos (t²/2) 2t / 2
a = - sin (t²/2) - t (t-1) cos (t²/2)
the acceleration for t = 4 s
a = - sin (4²/2) - 4 (4-1) cos (4²/2)
a = -sin 8 - 12 cos 8
remember that the angles are in radians
a = 0.7267
the problem does not indicate the units, but to be correct they must be m/s²
We see that the acceleration is positive therefore the speed is increasing
Answer:
<h2>
650W/m²</h2>
Explanation:
Intensity of the sunlight is expressed as I = Power/cross sectional area. It is measured in W/m²
Given parameters
Power rating = 6.50Watts
Cross sectional area = 100cm²
Before we calculate the intensity, we need to convert the area to m² first.
100cm² = 10cm * 10cm
SInce 100cm = 1m
10cm = (10/100)m
10cm = 0.1m
100cm² = 0.1m * 0.1m = 0.01m²
Area (in m²) = 0.01m²
Required
Intensity of the sunlight I
I = P/A
I = 6.5/0.01
I = 650W/m²
Hence, the intensity of the sunlight in W/m² is 650W/m²
The answer is B) evaporation,condensation, precipitation, runoff/storage
Answer:
The lens to be used for the objective is lens A
Explanation:
The objective of a compound microscope
The focal length of the lens used for the objective = 1/(magnification obtained)
The focal length of most modern is equal to the tube length
The range of sizes for the focal length of a microscope is between 2 mm and 40 mm
Therefore, the appropriate lens to be used for the objective of the compound is lens A that has a focal length of 0.50 cm = 5 mm
Answer:
red giant stars/ red hyper giants
Explanation:
take stephenson 2-18 for example the star is only 3200k where the sun is around 5000k.