Hubble space telescope, Hubble deep field guide, moon, mercury, Saturn, sun, galaxy messier 101
Answer:
time taken with speed 23 km/h will be 1.8 hours or 1 hour 48 minutes
Explanation:
Given:
Time is inversely proportional to the speed
mathematically,
t ∝ (1/r)
let the proportionality constant be 'k'
thus,
t = k/r
therefore, for case 1
time = 3 hr
speed = 14 km/hr
3 = k/14
also,
for case 2
let the time be = t
r = 23 km/h
thus,
we have
t = k/23
on dividing equation 2 by 1
we get

or

or
t = 1.8 hr = or 1 hour 48 minutes ( 0.8 hours × 60 minutes/hour = 48 minutes)
By using third law of equation of motion, the final velocity V of the rubber puck is 8.5 m/s
Given that a hockey player hits a rubber puck from one side of the rink to the other. The parameters given are:
mass m = 0.170 kg
initial speed u = 6 m/s.
Distance covered s = 61 m
To calculate how fast the puck is moving when it hits the far wall means we are to calculate final speed V
To do this, let us first calculate the kinetic energy at which the ball move.
K.E = 1/2m
K.E = 1/2 x 0.17 x 
K.E = 3.06 J
The work done on the ball is equal to the kinetic energy. That is,
W = K.E
But work done = Force x distance
F x S = K.E
F x 61 = 3.06
F = 3.06/61
F = 0.05 N
From here, we can calculate the acceleration of the ball from Newton second law
F = ma
0.05 = 0.17a
a = 0.05/0.17
a = 0.3 m/
To calculate the final velocity, let us use third equation of motion.
=
+ 2as
=
+ 2 x 0.3 x 61
= 36 + 36
= 72
V = 
V = 8.485 m/s
Therefore, the puck is moving at the rate of 8.5 m/s (approximately) when it hits the far wall.
Learn more about dynamics here: brainly.com/question/402617
Kepler derived his three laws of planetary motion entirely from
observations of the planets and their motions in the sky.
Newton published his law of universal gravitation almost a hundred
years later. Using some calculus and some analytic geometry, which
any serious sophomore in an engineering college should be able to do,
it can be shown that IF Newton's law of gravitation is correct, then it MUST
lead to Kepler's laws. Gravity, as Newton described it, must make the planets
in their orbits behave exactly as they do.
This demonstration is a tremendous boost for the work of both Kepler
and Newton.
Answer:
Pushing molecules like a wave.
Explanation: