1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vinvika [58]
3 years ago
12

a ball of mass 100g moving at a velocity of 100m/s collides with another ball of mass 400g moving at 50m/s in same direction, if

they stick together calculate the velocity and loss of energy​
Physics
1 answer:
klio [65]3 years ago
7 0

Answer:

Velocity of the two balls after collision: 60\; \rm m \cdot s^{-1}.

100\; \rm J of kinetic energy would be lost.

Explanation:

<h3>Velocity</h3>

Because the question asked about energy, convert all units to standard units to keep the calculation simple:

  • Mass of the first ball: 100\; \rm g = 0.1\; \rm kg.
  • Mass of the second ball: 400\; \rm g = 0.4 \; \rm kg.

The two balls stick to each other after the collision. In other words, this collision is a perfectly inelastic collision. Kinetic energy will not be conserved. The velocity of the two balls after the collision can only be found using the conservation of momentum.

Assume that the system of the two balls is isolated. Thus, the sum of the momentum of the two balls will stay the same before and after the collision.

The momentum of an object of mass m and velocity v is: p = m \cdot v.

Momentum of the two balls before collision:

  • First ball: p = m \cdot v = 0.1\; \rm kg \times 100\; \rm m \cdot s^{-1} = 10\; \rm kg \cdot m \cdot s^{-1}.
  • Second ball: p = m \cdot v = 0.4\; \rm kg \times 50\; \rm m \cdot s^{-1} = 20\; \rm kg \cdot m \cdot s^{-1}.
  • Sum: 10\; \rm kg \cdot m \cdot s^{-1} + 20 \; \rm kg \cdot m \cdot s^{-1} = 30 \; \rm kg \cdot m \cdot s^{-1} given that the two balls are moving in the same direction.

Based on the assumptions, the sum of the momentum of the two balls after collision should also be 30\; \rm kg \cdot m \cdot s^{-1}. The mass of the two balls, combined, is 0.1\; \rm kg + 0.4\; \rm kg = 0.5\; \rm kg. Let the velocity of the two balls after the collision v\; \rm m \cdot s^{-1}. (There's only one velocity because the collision had sticked the two balls to each other.)

  • Momentum after the collision from p = m \cdot v: (0.5\, v)\; \rm kg \cdot m \cdot s^{-1.
  • Momentum after the collision from the conservation of momentum: 30\; \rm kg \cdot m \cdot s^{-1}.

These two values are supposed to describe the same quantity: the sum of the momentum of the two balls after the collision. They should be equal to each other. That gives the equation about v:

0.5\, v = 30.

v = 60.

In other words, the velocity of the two balls right after the collision should be 60\; \rm m \cdot s^{-1}.

<h3>Kinetic Energy</h3>

The kinetic energy of an object of mass m and velocity v is \displaystyle \frac{1}{2}\, m \cdot v^{2}.

Kinetic energy before the collision:

  • First ball: \displaystyle \frac{1}{2} \, m \cdot v^2 = \frac{1}{2}\times 0.1\; \rm kg \times \left(100\; \rm m \cdot s^{-1}\right)^{2} = 500\; \rm J.
  • Second ball: \displaystyle \frac{1}{2} \, m \cdot v^2 = \frac{1}{2}\times 0.4\; \rm kg \times \left(50\; \rm m \cdot s^{-1}\right)^{2} = 500\; \rm J.
  • Sum: 500\; \rm J + 500\; \rm J = 1000\; \rm J.

The two balls stick to each other after the collision. Therefore, consider them as a single object when calculating the sum of their kinetic energies.

  • Mass of the two balls, combined: 0.5\; \rm kg.
  • Velocity of the two balls right after the collision: 60\; \rm m\cdot s^{-1}.

Sum of the kinetic energies of the two balls right after the collision:

\displaystyle \frac{1}{2} \, m \cdot v^{2} = \frac{1}{2}\times 0.5\; \rm kg \times \left(60\; \rm m \cdot s^{-1}\right)^2 = 900\; \rm J.

Therefore, 1000\; \rm J - 900\; \rm J = 100\; \rm J of kinetic energy would be lost during this collision.

You might be interested in
What is the force in N of an object that has a mass of 7 kilograms and an acceleration of 4 m/s/s
VMariaS [17]

Newton's 2nd law of motion:         Force = (mass) x (acceleration)

If you want to move a 7-kg object with an acceleration of 4 m/s²,
then you will need to push it with (7 x 4) = 28 newtons of force.

4 0
3 years ago
What is the relationship between atmospheric pressure and the density of gas particles in an area of increasing pressure
mezya [45]

Answer:

this is a no brainer

Explanation:

As air pressure in an area increases, the density of the gas particles in that area increases.

8 0
3 years ago
Christina drives his moped 7 kilometers North. She stops for lunch and then drives 5 kilometers East. What distance did she cove
Mashutka [201]

Answer:

She covers the distance is 12 km.

The magnitude of displacement is 8.6 km.

The direction of her displacement is north east.

Explanation:

Given that,

Christina drives his moped 7 kilometers North and stop for lunch and then drive 5 km east.

We need to calculate the total distance

Using formula of distance

d=d_{1}+d_{2}

Put the value into the formula

d=7+5

d=12\ km

We need to calculate the magnitude of displacement

Using formula of displacement

D=xi+yj

D=5i+7j

D=\sqrt{5^2+7^2}

D= 8.6\ km

The direction of her displacement is north east.

Hence, She covers the distance is 12 km.

The magnitude of displacement is 8.6 km.

The direction of her displacement is north east.

6 0
3 years ago
A 10 gauge copper wire carries a current of 20 A. Assuming one free electron per copper atom, calculate the magnitude of the dri
nordsb [41]

Complete Question

A 10 gauge copper wire carries a current of 20 A. Assuming one free electron per copper atom, calculate the drift velocity of the electrons. (The cross-sectional area of a 10-gauge wire is 5.261 mm2.) mm/s

Answer:

The drift velocity is v  = 0.0002808 \ m/s

Explanation:

From the question we are told that

    The current on the copper is  I  = 20 \ A

     The cross-sectional area is  A =  5.261 \ mm^2 =  5.261 *10^{-6} \ m^2

The number of copper atom in the wire is  mathematically evaluated

      n  =  \frac{\rho *  N_a}Z}

Where \rho is the density of copper with a value \rho =  8.93 \ g/m^3

          N_a is the Avogadro's number with a value N_a  = 6.02 *10^{23}\ atom/mol

         Z  is the molar mass of copper with a value  Z =  63.55 \ g/mol

So

     n  =  \frac{8.93 * 6.02 *10^{23}}{63.55}

     n  = 8.46 * 10^{28}  \  atoms /m^3

Given the 1 atom is equivalent to 1 free electron then the number of free electron is  

         N  = 8.46 * 10^{28}  \  electrons

The current through the wire is mathematically represented as

         I  =  N * e * v * A

substituting values

        20 =  8.46 *10^{28} * (1.60*10^{-19}) * v *  5.261 *10^{-6}

=>     v  = 0.0002808 \ m/s

       

8 0
3 years ago
Nitrous oxide is the chemical name for “laughing gas.” What are the names and the number of atoms in a molecule of nitrous oxide
Vesnalui [34]
2 nitrogen molecules and 1 oxygen molecule

6 0
3 years ago
Other questions:
  • When resistors are connected in series, we can be certain that:______
    12·1 answer
  • The quantity represented by vi is a function of time (i.e., is not constant).A. TrueB. False
    11·1 answer
  • Which of the following correctly describes the hierarchy that exists in the universe? A galaxy refers to all existing matter, en
    6·2 answers
  • A 12 kg box is at rest on your kitchen counter, which your cat is pawing at with a horizontal force of 40 N. If the coefficient
    12·1 answer
  • A rocket fires its engines to launch straight up from rest with an upward acceleration of 5 m/s2 for 10 seconds. After this time
    11·2 answers
  • Physical science challenge me to​
    15·1 answer
  • A 25.0 kg object is held 8.50 m above the ground. Calculate its PE
    14·1 answer
  • An oxygen atom picks up two additional, free-floating electrons. Is the charge of the newly formed oxygen ion positive, negative
    6·1 answer
  • Please help i would really appreciate it
    8·2 answers
  • Propane (c3h8), a common fuel, reacts with oxygen to form carbon dioxide and water according to the equation below. c3h8 5o2 → 3
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!