Answer:
35750.4 Joules
Explanation:
Using the formula as follows;
Q = m × c × ∆T
Where;
Q = amount of heat (joules)
m = mass of substance (g)
c = specific heat capacity (J/g°C)
∆T = change in temperature (°C)
According to the provided information,
mass (m) = 320.0 grams
c = 4.2 J/g°C
∆T = (50.8°C - 24.2°C) = 26.6°C
Q = ?
Using; Q = m × c × ∆T
Q = 320 × 4.2 × 26.6
Q = 35750.4 J
First, we will convert the mass of the gallon to grams:
a gallon of water has a mass of 3.79 * 1000 = 3790 grams of water
number of moles can be calculated using the following rule:
number of moles = mass / molar mass
Therefore,
number of moles = 3790 / 18.02 = 210.32 moles
The fiction is b because the terms mean subtract
<span>That the mass is far lesser
and distributed mistakenly, as compared to what the orbits of stars declare it
should be. Stars orbit more rapidly than the mass would predict, particularly
out toward the galactic edge. This means that there is more mass than has been
measured, and that it is spread out in a huge cloud around the galaxy. This is
one of the reasons why scientists believe that dark matter exists.</span>
The half-life of this radioisotope : 12 hr
<h3>Further explanation
</h3>
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually radioactive elements have an unstable atomic nucleus.
General formulas used in decay:

t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
t=48 hr

The half-life :
