Answer:
As r decreases, we lose gravitational potential energy - in other words, U G U_G UGU, start subscript, G, end subscript becomes more negative. Because energy is conserved, the velocity must increase, resulting in an increase in kinetic energy.
Explanation:
Answer:
There is a loss of fluid in the container of 0.475L
Explanation:
To solve the problem it is necessary to take into account the concepts related to the change of voumen in a substance depending on the temperature.
The formula that describes this thermal expansion process is given by:

Where,
Change in volume
Initial Volume
Change in temperature
coefficient of volume expansion (Coefficient of copper and of the liquid for this case)
There are two types of materials in the container, liquid and copper, so we have to change the amount of Total Volume that would be subject to,

Where,
= Change in the volume of liquid
= Change in the volume of copper
Then replacing with the previous equation we have:


Our values are given as,
Thermal expansion coefficient for copper and the liquid to 20°C is




Replacing we have that,



Therefore there is a loss of fluid in the container of 0.475L
Answer: The bond that hold water molecules together are due to shared electrons. The bond of shared electrons is known as a covalent bond.
Explanation: Water is held together by bonds known as covalent bonds, in which electrons are shared by the elements. In this case, the two hydrogen atoms and the one oxygen atom share a bond in which they share electrons, attaining a full outer shell.