Answer:
Part a)

Part b)

Explanation:
As we know that capacitor plate is connected across 2.1 V and after charging it is disconnected from the battery
So here we can say that charge on the plates will remain conserved
So we will have

now dielectric is removed between the plates of capacitor
so new potential difference between the plates




Part b)
Now the capacitor plates are again isolated and unknown dielectric is inserted between the plates
So again charge is same so potential difference is given as




B = 0.018 T Ans,
Since, it is moving in a circular path, thus, centripetal force will act on it i.e.
F =

where, m is the mass of the object, v is the velocity and r is the radius of circular path.
And, since a positive charge is moving, it will create magnetic force which is equal to F = qvB
where q is the charge, v is the velocity of the particle and B is the magnetic field.
Now, the two forces will be equal,
i.e.

= qvB
⇒

= qB
⇒B =

<span>putting the values, we get,
</span>
use q = 1.6 * 10^ -19
⇒ B = 0.018 T
Answer:
b
Explanation:
because with no pole there is no role
Answer:
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Explanation:
Given:
v = (-23.2, -104.4, 46.4) m/s
Above expression describes spacecraft's velocity vector v.
Find:
Find unit vector in the direction of spacecraft velocity v.
Solution:
Step 1: Compute magnitude of velocity vector.
mag (v) = sqrt ( 23.2^2 + 104.4^2 + 46.4^2)
mag (v) = 116.58 m/s
Step 2: Compute unit vector unit (v)
unit (v) = vec (v) / mag (v)
unit (v) = [ -23.2 i -104.4 j + 46.4 k ] / 116.58
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Density depends on mass and volume so option D is correct answer. Hope this helps!