For this use the formula:
d = Vo * t - (at^2) / 2
Clearing t:
t = d/(v + 0.5*a)
Replacing:
t = 5 m / (7.2 m/s + 0.5 * (-1.1 m/s²)
Resolving:
t = 5 m / (7.2 m/s + (-0.55 m/s²)
t = 5 m / 6.65 m/s
t = 0.75 s
Result:
The time will be <u>0.75 seconds.</u>
Answer: The height (position) of the ball and the acceleration due gravity
Explanation:
In this case we are taking about gravitational potential energy, which is the energy a body or object possesses, due to its position in a gravitational field. In this sense, this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the Earth, in which the gravitational field is considered constant, the gravitational potential energy
will be:
Where:
is the mass of the ball
is the acceleration due gravity (assuming the ball is on the Earth surface)
is the height (position) of the ball respect to a given point
Note the value of the gravitational potential energy is directly proportional to the height.
Answer:
C
Explanation:
The change in momentum of x has to be the opposite of the change in momentum of Y because the momentum is just transferred from one to another. But I'm still trying to figure it out how to calculate.