Answer:
3 × 10⁴ kJ
Explanation:
Step 1: Write the balanced thermochemical equation
C₃H₈(g) + 5 O₂(g) ⟶ 3 CO₂(g) + 4 H₂O(g) ΔH = -2220 kJ
Step 2: Calculate the moles corresponding to 865.9 g of H₂O
The molar mass of H₂O is 18.02 g/mol.
865.9 g × 1 mol/18.02 g = 48.05 mol
Step 3: Calculate the heat produced when 48.05 moles of H₂O are produced
According to the thermochemical equation, 2220 kJ of heat are evolved when 4 moles of H₂O are produced.
48.05 mol × 2220 kJ/4 mol = 2.667 × 10⁴ kJ ≈ 3 × 10⁴ kJ
Answer:
CuSO4
Explanation:
Na2S + CuSO4 → Na2SO4 + CuS
The reaction is balanced (same number of elements in each side)
To determine limiting reagent you need to know the moles you have of each.
Molar mass Na2S = 23 * 2 + 32 = 78
Molar mass CuSO4 = 63.5 + 32 + 16 * 4 = 159.5
Na2S mole = 15.5 / 78 = 0.2
CuSO4 mole = 12.1/159.5 = 0.076
*Remember mole = mass / MM
With that information now you have to divide each moles by its respective stoichiometric coefficient
Na2S stoichiometric coefficient : 1
Na2S : 0.2 / 1 = 0.2
CuSO4 stoichiometric coefficient: 1
CuSO4: 0.076 / 1 = 0.076
The smaller number between them its the limiting reagent, CuSO4
Śhüt ûp and go pay attention in your class
The mass is 224 grams of NaOH
Answer:
10.32 moles of ammonia NH₃
Explanation:
From the question given above, the following data were obtained:
Number of molecules = 6.21×10²⁴ molecules
Number of mole of NH₃ =?
The number of mole of NH₃ can be obtained as follow:
From Avogadro's hypothesis,
6.02×10²³ molecules = 1 mole
Therefore,
6.21×10²⁴ molecules = 6.21×10²⁴ / 6.02×10²³
6.21×10²⁴ molecules = 10.32 moles
Thus, 6.21×10²⁴ molecules contains 10.32 moles of ammonia NH₃