Answer:
=1.068 ×10⁻¹³N
Explanation:
Force of gravity =Gm₁m₁/d² where G is the universal gravitation constant =G = 6.673 x 10-11 N m²/kg², m₁ and m₂ is the mass of object 1 and 2 respectively and d is the distance between them. First we change the distance into SI units i.e meters 25 km= 25000 m
F= (6.673 x 10⁻¹¹ N m²/kg²×1000 kg×1000 kg)/ (25000 m)²
=1.068 ×10⁻¹³N
Answer:
The carbon dioxide (CO2) emitted from power plants each year doesn't have to go into the atmosphere. Researchers are optimistic that within the next decade we will be able to affordably capture CO2 waste and convert it into useful molecules for feedstock, biofuels, pharmaceuticals, or renewable fuels.
<span>a)
</span>First order
in A and zero order in B
<span>ln [A]
= (ln 0.1) (2) + ln Ao = ln 0.01 + ln Ao = ln 0.01 Ao = 1.0% of A will remain</span>
<span>b)
</span>First
order in A and first order in B
<span>1/[A] – 1/[A]0= kt where t+=1 and k=9</span>
[A]/[A]=1/19=0.053=5.3%
<span>c)
</span>Zero
order in both A and B
<span>[A]0-[A] = kt</span>
Then at 2
hours [A]=0 All of it has reacted.
<span> </span>
Answer:
Molarity: 0.522M
Percentage by mass: 2.36 (w/w) %
Explanation:
Formic acid, HCOOH reacts with NaOH as follows:
HCOOH + NaOH → NaCOOH + H₂O
To solve this question we must find the moles of NaOH added = Moles formic acid. Taken into account the dilution that was made we can find the moles -And molarity of formic acid and its percentage by mass as follows:
<em>Moles NaOH = Moles HCOOH:</em>
0.01580L * (0.1322mol / L) =0.002089 moles HCOOH
<em>Moles in the original solution:</em>
0.002089 moles HCOOH * (25mL / 10mL) = 0.005222 moles HCOOH
<em>Molarity of the solution:</em>
0.005222 moles HCOOH / 0.01000L =
<h3>0.522M</h3>
<em>Mass HCOOH in 1L -Molar mass: 46.03g/mol-</em>
0.522moles * (46.03g / mol) = 24.04g HCOOH
<em>Mass solution:</em>
1L = 1000mL * (1.02g / mL) = 1020g solution
<em>Mass percent:</em>
24.04g HCOOH / 1020g solution * 100
2.36 (w/w) %
Protons : positive charge , about same mass as neutrons , in the nucleus
neutrons : no charge , about the same mass as a proton , in the nucleus
electrons : negative charge , less mass than protons and neutrons , in orbitals outside of the nucleus