Answer:
91.7 kJ
Explanation:
Step 1: Given data
- Mass of ammonia (m): 66.7 g
- Molar heat of vaporization of ammonia (ΔH°vap): 23.4 kJ/mol
Step 2: Calculate the moles (n) corresponding to 66.7 g of ammonia
The molar mass of ammonia is 17.03 g/mol.
66.7 g × 1 mol/17.03 g = 3.92 mol
Step 3: Calculate the heat (Q) required to boil 3.92 moles of ammonia
We will use the following expression.
Q = ΔH°vap × n
Q = 23.4 kJ/mol × 3.92 mol = 91.7 kJ
Answer:
C. CH₄ is less than NH₃ because the NH bond is more polar than the CH bond
Explanation:
The intermolecular forces between ammonia is far stronger than for methane. Between the molecules of ammonia we have the presence of hydrogen bonds. This bond is absent in methane.
Hydrogen bonds are one of the strongest intermolecular forces. It is as a result of the electrostatic attraction between the hydrogen atom of one molecule and the electronegative atom N, O and F of another molecule.
- This strong interaction is absent in methane which has just dipole - dipole attraction.
The strength of the hydrogen bond depends on the electronegativity of the combining atoms.
Answer:
the advantage of using Microsoft Excel to create a graph, as opposed to pen and paper is it will help you get the right answer
Explanation:
<span>Answer:
From the ideal gas law, MM=mRTPV; where MM = molecular mass; m = mass; P = pressure in atmospheres; V= volume in litres; R = gas constant with appropriate units.
So, 0.800â‹…gĂ—0.0821â‹…Lâ‹…atmâ‹…Kâ’1â‹…molâ’1Ă—373â‹…K0.256â‹…LĂ—0.987â‹…atm = 97.0 gâ‹…molâ’1.
nĂ—(12.01+1.01+2Ă—35.45)â‹…gâ‹…molâ’1 = 97.0â‹…gâ‹…molâ’1.
Clearly, n = 1. And molecular formula = C2H2Cl2.
I seem to recall (but can't be bothered to look up) that vinylidene chloride, H2C=C(Cl)2 is a low boiling point gas, whereas the 1,2 dichloro species is a volatile liquid. At any rate we have supplied the molecular formula as required.</span>
The surface would be flat