Answer:
The focal length fe of the eyepiece is <em>2.86 cm</em>
Explanation:
Since we are given the telescope's magnification and the length of the tube, we can use the expressions
<em>M = f_o/fe (1)</em> and
<em>l = f_o + fe (2)</em>
where
- M is the telescope's magnification
- l is the length of the tube
- fe is the focal length of the eye-piece
Rearranging equation (2) to make f_o the subject of the formula, we get
<em>f_o = l - fe</em>
Substituting the above equation into equation (1) we get
<em>M = (l - fe)/fe ⇒ fe = l/(M +1)</em>
<em> ⇒ fe = 60/(20 + 1)</em>
⇒ <em>fe = 2.86 cm</em>
B: Sprinting. It is the best answer because it demonstrates speed better than the others
Answer:
E= 55.53 x 10³ V/m
Explanation:
Given that
a= 3.63 cm
Area ,A= a²
distance ,d= 0.473 mm
Stored energy ,U = 8.49 nJ
Value of capacitor given as

By putting the values

C=2.46 x 10⁻¹¹ F

V=Voltage difference


V=26.27 V
V= E d
E=Electric filed
26.27 = E x 0.473 x 10⁻³
E= 55.53 x 10³ V/m