Answer:
Explanation:
a ) Momentum of first cart = mass x velocity
= 3 x 4.6 =+13.8 kg m /s
Momentum of second cart = 1.3 x - 1.9 = - 2.47 kg m /s
Total momentum = 13.8 - 2.47
= +11.33 kg m /s
b )
Let the velocity of first cart be v at the moment when second cart was at rest
total momentum = 3 x v + 0 = 3 v
Applying conservation of momentum law
3 v = +11.33
v = +3.77 m /s
Answer:
E=0
Explanation:
The electric field at the centre of the shell is zero because total enclosed charge in the nucleus is zero
Answer:
Towards the west
Explanation:
Magnetic force is the interaction between a moving charged particle and a magnetic field.
Magnetic force is given as
F = q (V × B)
Where F is the magnetic force
q is the charge
V is the velocity
B is the magnetic field
V×B means the cross product of the velocity and the magnetic field
NOTE:
i×i=j×j×k×k=0
i×j=k. j×i=-k
j×k=i. k×j=-i
k×i=j. i×k=-j
So, if the electron is moving southward, then, it implies that the velocity of it motion is southward, so the electron is in the positive z-direction
Also, the electron is curved upward due to the magnetic field, this implies that the force field is directed up in the positive y direction.
Then,
V = V•k
F = F•j
Then, apply the theorem
F •j = q ( V•k × B•x)
Let x be the unknown
From vector k×i =j.
This shows that x = i
Then, the magnetic field point in the direction of positive x axis, which is towards the west
You can as well use the Fleming right hand rule
The thumb represent force
The index finger represent velocity
The middle finger represent field
According to Hooke's law, Force = spring constant x displacement of the spring. Spring constant = Force/displacement in spring = 45/0.14 = 321.42 N/m. Hope this helps!