Answer:
The magnitude of the force required to move the electron through the given field is 2.203 N
Explanation:
Given;
The field strength of the electron, E = 1.375 x 10¹⁹ N/C
charge of electron, q = 1.602 x 10⁻¹⁹ C
The magnitude of the force required to move the electron through the given field is calculated as follows;
F = Eq
F = (1.375 x 10¹⁹ N/C) (1.602 x 10⁻¹⁹ C)
F = 2.203 N
Therefore, the magnitude of the force required to move the electron through the given field is 2.203 N
Explanation:
F = ma is the formula of Newton's Second Law of Motion. Newton's Second Law of Motion is defined as Force is equal to the rate of change of momentum. For a constant mass, force equals mass times acceleration.
...
These are known as balanced forces because they will not change the motion of the object, and it will remain at rest unless forces become unbalanced- meaning they would be unequal and not opposing.
The Hubble Space Telescope is a joint ESA/NASA project and was launched in 1990 by the Space Shuttle mission STS-31 into a low-Earth orbit 569 km above the ground. During its lifetime Hubble has become one of the most important science projects ever. Hope this helps! ~ Autumn :)