Answer:
a) ∝ and β
The phase compositions are :
C
= 5wt% Sn - 95 wt% Pb
C
= 98 wt% Sn - 2wt% Pb
b)
The phase is; ∝
The phase compositions is; 82 wt% Sn - 91.8 wt% Pb
Explanation:
a) 15 wt% Sn - 85 wt% Pb at 100⁰C.
The phases are ; ∝ and β
The phase compositions are :
C
= 5wt% Sn - 95 wt% Pb
C
= 98 wt% Sn - 2wt% Pb
b) 1.25 kg of Sn and 14 kg Pb at 200⁰C
The phase is ; ∝
The phase compositions is; 82 wt% Sn - 91.8 wt% Pb
Csn = 1.25 * 100 / 1.25 + 14 = 8.2 wt%
Cpb = 14 * 100 / 1.25 + 14 = 91.8 wt%
Answer:
P > 142.5 N (→)
the motion sliding
Explanation:
Given
W = 959 N
μs = 0.3
If we apply
∑ Fy = 0 (+↑)
Ay + By = W
If Ay = By
2*By = W
By = W / 2
By = 950 N / 2
By = 475 N (↑)
Then we can get F (the force of friction) as follows
F = μs*N = μs*By
F = 0.3*475 N
F = 142.5 N (←)
we can apply
P - F > 0
P > 142.5 N (→)
the motion sliding
Answer:
modern vehicles are made to crunch up a little bit so they that absorbe some of the impact instead of you
Explanation:
Answer:
The S. I unit of current is Amphere
Answer:
0.0406 m/s
Explanation:
Given:
Diameter of the tube, D = 25 mm = 0.025 m
cross-sectional area of the tube = (π/4)D² = (π/4)(0.025)² = 4.9 × 10⁻⁴ m²
Mass flow rate = 0.01 kg/s
Now,
the mass flow rate is given as:
mass flow rate = ρAV
where,
ρ is the density of the water = 1000 kg/m³
A is the area of cross-section of the pipe
V is the average velocity through the pipe
thus,
0.01 = 1000 × 4.9 × 10⁻⁴ × V
or
V = 0.0203 m/s
also,
Reynold's number, Re = 
where,
ν is the kinematic viscosity of the water = 0.833 × 10⁻⁶ m²/s
thus,
Re = 
or
Re = 611.39 < 2000
thus,
the flow is laminar
hence,
the maximum velocity = 2 × average velocity = 2 × 0.0203 m/s
or
maximum velocity = 0.0406 m/s