Answer:
Correct option: B. 90%
Explanation:
The confidence interval is given by:
![CI = [\bar{x} - z\sigma_{\bar{x}} , \bar{x}+z\sigma_{\bar{x}} ]](https://tex.z-dn.net/?f=CI%20%3D%20%5B%5Cbar%7Bx%7D%20-%20z%5Csigma_%7B%5Cbar%7Bx%7D%7D%20%2C%20%5Cbar%7Bx%7D%2Bz%5Csigma_%7B%5Cbar%7Bx%7D%7D%20%5D)
If
is 190, we can find the value of
:



Now we need to find the value of
:


So the value of z is 1.71.
Looking at the z-table, the z value that gives a z-score of 1.71 is 0.0436
This value will occur in both sides of the normal curve, so the confidence level is:

The nearest CI in the options is 90%, so the correct option is B.
Answer:
32000 bits/seconds
Explanation:
Given that :
there are 16 signal combinations (states) = 2⁴
bits n = 4
and a baud rate (number of signals/second) = 8000/second
Therefore; the number of bits per seconds can be calculated as follows:
Number of bits per seconds = bits n × number of signal per seconds
Number of bits per seconds = 4 × 8000/second
Number of bits per seconds = 32000 bits/seconds
Answer:
18 teeth/inch
Explanation:
Given that: i. driver gear has 8 teeth and diametral pitch of 6 teeth/inch.
ii. follower gear has 24 teeth.
Let the followers diametral pitch be represented by x.
Then,
8 teeth ⇒ 6 teeth/inch
24 teeth ⇒ x teeth/inch
So that;
x = 
= 
= 18 teeth/inch
The diametral is 18 teeth/inch
Answer:
γ
=0.01, P=248 kN
Explanation:
Given Data:
displacement = 2mm ;
height = 200mm ;
l = 400mm ;
w = 100 ;
G = 620 MPa = 620 N//mm²; 1MPa = 1N//mm²
a. Average Shear Strain:
The average shear strain can be determined by dividing the total displacement of plate by height
γ
= displacement / total height
= 2/200 = 0.01
b. Force P on upper plate:
Now, as we know that force per unit area equals to stress
τ = P/A
Also, τ = Gγ
By comapring both equations, we get
P/A = Gγ
------------ eq(1)
First we need to calculate total area,
A = l*w = 400 * 100= 4*10^4mm²
By putting the values in equation 1, we get
P/40000 = 620 * 0.01
P = 248000 N or 2.48 *10^5 N or 248 kN
Answer:
F=1.47 KN
Explanation:
Given that
Diameter of plate = 25 cm
Height of pool h = 3 m
We know that force can be given as
F= P x A
P=ρ x g x h
Now by putting the values
P=1000 x 10 x 3
P= 30 KPa


F= 30 x 0.049 KN
F=1.47 KN
So the force on the plate will be 1.47 KN.