Answer:
Amplitude and Frequency
Explanation:
Analog signals are composed of continuous waves that can have any values for frequency and amplitude. These waves are smooth and curved.
Radio transmissions are a combination of two kinds of waves: audio frequency waves that represent the sounds being transmitted and radio frequency waves that "carry" the audio information. All waves have a wavelength, an amplitude and a frequency as shown in the figure. These properties of the wave allow it to be modified to carry sound information.
The two most common types of modulation used in radio are amplitude modulation (AM) and frequency modulation (FM). Frequency modulation minimizes noise and provides greater fidelity than amplitude modulation, which is the older method of broadcasting . Both AM and FM are analog transmission systems, that is, they process sounds into continuously varying patterns of electrical signals which resemble sound waves.
We can use Newton II here (where F=m*a), that F is the net (or resultant) force on the object, m is the mass of the object and a is the acceleration the object experiences.
This means, in this case there would be no friction and absolutely no other force which gives a component in the plane of motion, only then can you assume that F=804N.
Now using F= m*a
804 = 51.7*a
Therefore a = 804/51.7 = 15.55 m/s²
Answer:
161.86 N
Explanation:
mass of box m= 55.0 kg
weight of the box, mg= 55×9.81
g here is acceleration due to gravity =9.81 m/sec^2
coefficient of friction between the box and the surface μ= 0.3
the friction force F_s= μmg= 0.3×55×9.81
=161.86 N
to move the ball horizontal force required is 161.86 N
Answer:
- The magnitude of the vector
is 107.76 m
Explanation:
To find the components of the vectors we can use:

where
is the magnitude of the vector, and θ is the angle over the positive x axis.
The negative x axis is displaced 180 ° over the positive x axis, so, we can take:






Now, we can perform vector addition. Taking two vectors, the vector addition is performed:

So, for our vectors:


To find the magnitude of this vector, we can use the Pythagorean Theorem



And this is the magnitude we are looking for.
The resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms)
Explanation:
In the United States Of America the standard voltage is 120 v and their frequency is 60 Hz
Standard wall outlet voltage is 120 V
The current in the lamp is 0.5 ampere
Resistance (R) = V/ I
= 120/0.5
= 240Ω (ohms)
Thus the resistance of the lamp plugged in to a standard wall outlet with a current of 0.5 amps is 240 Ω (ohms).