To find AH°rxn, we use the following equation:
What we're going to do is to sum the enthalpy of the products and then substract with the enthalpy of the reactives:
As you can see, we need to multiply by the coefficients of the reaction.
Now, just replace the values of the table:
So the answer is -822.2kJ/mol.
For b:
Now, just replace the values of the table:
The answer for b is -1036kJ/mol.
Answer:A+B - AB
Element a reaction with element b to create the newest element ab
Answer:
Fossil fuels.
Explanation:
A fossil fuel is a fuel obtained from nature such as crude oil, coal, wood etc. The burning of fossil fuels releases tremendous amounts of carbon IV oxide into the environment causing a myraid of environmental problems paramount among them is global warming with its attendant consequences.
B) a molecule
A molecule is formed when two atoms join together with a covalent bond.
14.292 grams of Fe2O3 is formed when 10 gram of iron metal is burned.
Explanation:
The balanced equation for the reaction is to be known so that number of moles taking part can be known.
The balanced chemical equation is
4Fe + 3
⇒ 2 

From the given weight of iron to be used for the production of 
, number of moles of Fe taking part in the reaction can be known by the formula:
Number of moles= mass ÷ Atomic mass of one mole of the element.
(Atomic weight of Fe is 55.845 gm/mole)
Putting the values in equation
Number of moles = 10 gm ÷ 55.845 gm/mole
= 0.179 moles
Applying the stoichiometry concept
4 moles of Fe gives 2 Moles of Fe2O3
0.179 moles will produce x moles of Fe2O3
So, 2÷ 4 = x ÷ 0.179
2/4 = x/ 0.179
2 × 0.179 = 4x
2 × 0.179 / 4 = x
x = 0.0895 moles
So from 10 grams of iron metal 0.0895 moles of Fe2O3 is formed.
Now the formula used above will give the weight of Fe2O3
weight = atomic weight × number of moles
= 159.69 grams × 0.0895
= 14.292 grams of Fe2O3 formed.