Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.
Answer:
It's a type of chemical bonding that rises from the electrostatic attractive force between conduction electrons and positively charged metal bars. It can also be described as the sharing of free electrons among a structure of positively charged ions
The answer is the letter "C" ( I have honors science I am good at this type of stuff )
Hope I helped :) ( ask me for help when u need it :)
Answer: Option (B) is the correct answer.
Explanation:
As we know that the temperature when the vapor pressure of liquid becomes equal to the atmospheric pressure surrounding the liquid. And, during this temperature liquid state of substance changes into vapor state.
But during this process of change in state of substance the temperature will cease to change for some time because unless and until all the liquid molecules do not convert into vapor state the temperature will not rise or change.
As the boiling point of water is
so the temperature ceases to change from
to
.
Therefore, we can conclude that when heating water, during
to
temperature range the temperature will cease to change for some time.