1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
11

A small insect viewed through a convex lens is 1.5 cmcm from the lens and appears 2.5 times larger than its actual size. Part A

What is the focal length of the lens
Physics
1 answer:
Art [367]3 years ago
3 0

Answer:

The focal length of the lens is 2.5 cm

Explanation:

Use the two equations for thin lenses combined: the one for magnification (m), and the one that relates distances of object d_o, of image d_i, and focal length;

m=\frac{h_i}{h_o} =-\frac{d_i}{d_o} \\  \\\frac{1}{d_i} +\frac{1}{d_o} =\frac{1}{f}

Since we know the value of the magnification (m), we can write the image distance in terms of the object distance, and then use it to replace the image distance in the second equation:

m=-\frac{d_i}{d_o} \\2.5=-\frac{d_i}{d_o}\\d_i=-2.5\,d_o

then, solving for the focal distance knowing that the object distance is 1.5 cm:

\frac{1}{d_i} +\frac{1}{d_o} =\frac{1}{f}\\-\frac{1}{2.5\,d_o} +\frac{1}{d_o} =\frac{1}{f}\\(2.5\,d_o\,f)\,(-\frac{1}{2.5\,d_o} +\frac{1}{d_o}) =\frac{1}{f}\,(2.5\,d_o\,f)\\-f+2.5\,f=2.5\,d_o\\1.5\,f=2.5\,d_o\\f=\frac{2.5\,d_o}{1.5} \\f=\frac{2.5\,(1.5\,\,cm)}{1.5}\\f=2.5\,\,cm

You might be interested in
Which energy sources can transfer thermal energy to a heat pump? Check all that apply.
choli [55]

Answer:1.Air, 2.the ground,3.water

Explanation:I just got it right:)

3 0
3 years ago
Two equally charged tiny spheres of mass 1.0 g are placed 2.0 cm apart. When released, they begin to accelerate away from each o
zhannawk [14.2K]

Answer:

The magnitude of the charge on each sphere is 0.135 μC

Explanation:

Given that,

Mass = 1.0

Distance = 2.0 cm

Acceleration = 414 m/s²

We need to calculate the magnitude of charge

Using newton's second law

F= ma

a=\dfrac{F}{m}

Put the value of F

a=\dfrac{kq^2}{mr^2}

Put the value into the formula

414=\dfrac{9\times10^{9}\times q^2}{1.0\times10^{-3}\times(2.0\times10^{-2})^2}

q^2=\dfrac{414\times1.0\times10^{-3}\times(2.0\times10^{-2})^2}{9\times10^{9}}

q^2=1.84\times10^{-14}

q=0.135\times10^{-6}\ C

q=0.135\ \mu C

Hence, The magnitude of the charge on each sphere is 0.135μC.

7 0
3 years ago
Read 2 more answers
Air, considered an ideal gas, is contained in an insulated piston-cylinder assembly outfitted with a paddle wheel. It is initial
Maru [420]

Our data are,

State 1:

P_1= 10psi=68.95kPa\\V_1 = 1ft^3=0.02831m^3\\T_1 = 100\°F = 310.93K

State 2:

P_2 =5psi=34.474kPa\\V_2 = 3ft^3=0.0899m^3

We know as well that 3BTU=3.16kJ/K

To find the mass we apply the ideal gas formula, which is given by

P_1V_1=mRT_1

Re-arrange for m,

m= \frac{P_1V_1}{RT_1}\\m= \frac{68.95*0.02831}{(0.287)310.9}\\m=0.021893kg=0.04806lbm\\

Because of the pressure, temperature and volume ratio of state 1 and 2, we have to

\frac{P_1V_1}{T_1}=\frac{P_2V_2}{T_2}

Replacing,

T_2 = \frac{P_2V_2}{P_1V_1}T_1\\T_2 =\frac{34.474*0.0844}{68.95*0.02831}*310.93\\T_2 = 464.217K=375.5\°F

For conservative energy we have, (Cv = 0.718)

W = m C_v = 0.718  \Delta T +dw\\dw = W - mv\Delta T\\dw = 3.16-(0.0218*0.718)(454.127-310.93)\\dw = 0.765kJ=0.72BTU

3 0
3 years ago
What type of subsurface material is able to store groundwater?
notka56 [123]
<span>Porous material has many spaces that can hold(store) groundwater.</span>
4 0
3 years ago
Driving on asphalt roads entails very little rolling resistance, so most of the energy of the engine goes to overcoming air resi
Bad White [126]
A) Agreed. 
<span>b) Value agreed but units should be W (watts). </span>

<span>c) Here's one method... </span>

<span>15 miles = 24140 m </span>

<span>1 gallon of gasoline contains 1.4×10⁸ J. </span>

<span>So moving a distance of 24140m requires gasoline containing 1.4×10⁸ J </span>

<span>Therefore moving a distance of 1m requires gasoline containing 1.4×10⁸/24140 = 5800 J </span>

<span>Overcoming rolling resitance for 1m requires (useful) work = force x distance = 1000x1 = 1000J </span>

<span>So 5800J (in the gasoline) provides 1000J (overcoming rolling resistance) of useful work for each metre moved. </span>

<span>Efficiency = useful work/total energy supplied </span>
<span>= 1000/5800 </span>
<span>= 0.17 (=17%) </span>
8 0
3 years ago
Other questions:
  • A block of height 120mm is placed on top of another block with a height of 1.50 m. What is the height of the two blocks together
    9·1 answer
  • Hello, What is a four letter word the second letter is a O, and the hint is, “A period or measurement of time”
    7·2 answers
  • A diver with a mass of 80.0 kg jumps from a dock into a 130.0 kg boat at rest on the west side of the dock. if the velocity of t
    8·1 answer
  • The force of gravity pulls down on your school with a total force of 400,000 newtons. The force of gravity pulling down on your
    9·1 answer
  • Suppose you throw a ball vertically upward with a speed of 49 m/s. Neglecting air friction, what would be the height of the ball
    10·1 answer
  • After the box comes to rest at position x1, a person starts pushing the box, giving it a speed v1. When the box reaches position
    5·1 answer
  • You toss a coin straight upward in a train which is moving at a constant velocity. If the air friction is negligible, the coin w
    13·1 answer
  • What is the momentum of a 5 kg object that has a velocity of 1.2 m/s? 3.8 kg • m/s 4.2 kg • m/s 6.0 kg • m/s 6.2 kg • m/s
    13·2 answers
  • How do charging and discharging compare? How can charging go unnoticed,
    7·1 answer
  • Calculation on simple pendulum
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!