Answer:
two-slit interference model was proposed by Young d sin θ = m λ
Explanation:
The two-slit interference model was proposed by Young, it establishes that if a coherent source of light passes through two slits, the shape of the given pattern is a consequence of the relative phase difference between the two rays; mathematically it can be expressed by
d sin θ = m λ
m= 0, 1, 2, 3, ...
for constructive interference, that is, the two rays arrive with a number between wavelengths.
D is the distance between the slits, tea the angle between the two rays, m an integer and m the wavelength used.
In a simulation a pattern of slits of equal intensity and equally spaced is observed.
Answer:
L = 0.48 H
Explanation:
let L be the inductance, Irms be the rms current, Vrms be the rms voltage and Vmax be the maximum voltage and XL be the be the reactance of the inductor.
Vrms = Vmax/(√2)
= (3.00)/(√2)
= 2.121 V
then:
XL = Vrms/I
= (2.121)/(2.50×10^-3)
= 848.528 V/A
that is L = XL/(2×π×f)
= (848.528)/(2×π×(280))
= 0.482 H
Therefore, the inductance needed to kepp the rms current less than 2.50mA is 0.482 H.
Answer:



Explanation:
M = Mass of Uranus
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
r = Radius of Uranus = 25360 km
h = Altitude = 104000 km
= Radius of Miranda = 236 km
m = Mass of Miranda = 
Acceleration due to gravity is given by

The mass of Uranus is 
Acceleration is given by

Miranda's acceleration due to its orbital motion about Uranus is 
On Miranda

Acceleration due to Miranda's gravity at the surface of Miranda is 
No, both the objects will fall towards Uranus. Also, they are not stationary.
The following scenarios that accurately describes a
condition in which resonance can occur is vibrating tuning fork is struck and
begins to vibrate as the object used to strike it is placed away from the
tuning fork. The answer is letter B.