Answer:
True
Explanation:
All the above statements buttress the fact that the larger molecule, the greater the magnitude of London forces between the molecules. Each of the statements above is a confirmation/explanation of this general rule.
Yeah it depends on what mixture
Answer:
[See Below]
Explanation:
✦ Physical Changes:
✧ Is when the form changes, but not the chemicals in that form.
✧ An example of this would be chopping wood. It's still wood but it's a different size now. It's easier to burn it since it's smaller.
✦ Chemical Changes:
✧ Is when the chemicals inside that form change to something else entirely
✧ An example would be an egg, when you cook the egg it can turn into being scrambled or fried. But you can't eat the raw egg until the chemicals change.
~<em>Hope this helps Mate. If you need anything feel free to message me.</em>
Answer: The density of Ammonia is 0.648 g/l
Explanation:
Density = Mass/ Volume
Mass of one mole of Ammonia (NH3) = 17.031g
Volume =?
Using the ideal gas law we can determine the volume.
PV = nRT
P = 0.913 atm, V= ?, n = 1, R = 0.08206 L.atm/K, and T= 293K
Make V the subject of the formular, we then have;
V= nRT/ P = 1 mol x 0.08206 L.atm/ K.mol x 293 / 0.913 atm
V = 24.04358/ 0.913 = 26.3L
Having gotten the value of Volume in this question, we then go back to solve for density.
Density = Mass/ Volume
17.031g/ 26.3L = 0.64756 ≈ 0.648 g/l
I'd guess A or D, but my gut says A