Molar mass NaHCO₃ = 23 + 1 + 12 + 16 x 3 = 84 g/mol
1 mole ---------- 84 g
? mole ---------- 110 g
moles NaHCO₃ = 110 . 1 / 84
moles NaHCO₃ = 110 / 84
= 1.309 moles
hope this helps!
To determine the number of moles of carbon dioxide that is produced, we need to know the reaction of the process. For the reaction of HCl and sodium carbonate, the balanced chemical equation would be expressed as:
2HCl + Na2CO3 = 2NaCl + H2O + CO2
From the initial amount given of sodium carbonate and the relation of the substances from the balanced reaction, we calculate the moles of carbon dioxide as follows:
0.2 moles Na2Co3 ( 1 mol CO2 / 1 mol Na2Co3 ) = 0.2 moles CO2
Therefore, the amount in moles of carbon dioxide that is produced from 0.2 moles sodium carbonate would be 0.2 moles as well.
Answer:
Rate depends on the rate constant. The rate constant depends on temperature and activation energy. If you have lower activation energy the rate will be higher. This is why catalysts are added since catalysts provide an alternate pathway that requires lower activation energy and catalysts are added to increase the rate of reaction.
Explanation:
This is only the answer if you were asking:
"Which corresponds to the faster rate: a mechanism with a small activation energy or one with a large activation energy?"
Thats what I understood about your question.
Answer:
"A molecular, or covalent bond, is formed when atoms bond by sharing pairs of electrons. This sharing can occur from atom to atom, or from an atom to another molecular bond."
Explanation:
Google