Answer:
(a) = 3.7 × 10⁻⁵
(b) = 4.1 × 10⁻⁶ N.M²/C
Explanation:
(a) Diameter of the sphere, d = 1.2 m
Radius of the sphere, r = 0.6 m
Surface charge density, = 8.1 mC/m2 = 8.1 × 10⁻⁶ C/m²
Total charge on the surface of the sphere,
Q = Charge density × Surface area
= 4πr²σ
= 4 (3.14) (0.12²) (8.1 × 10⁻⁶)
= 3.66 × 10⁻⁵C
≅ 3.7 × 10⁻⁵C
Therefore, the net charge on the sphere is 3.7 × 10⁻⁵C
(b)
Total electric flux (∅)
=Q / ε₀
ε₀ = 8.854 × 10⁻¹² N⁻¹C² m⁻²
Q = 3.66 × 10⁻⁵C
= 3.66 × 10⁻⁵ / 8.854 × 10⁻¹²
= 4.1 × 10⁻⁶ N.M²/C