Answer:
stay the same.
Explanation: Period 3 consists of the full 1s, 2s, and 2p electron orbitals, plus the 3s and 3p valence orbitals, which are filled with a total of 8 more electrons as we move from left (Na) to the far right (Ar):
Na: 1s2 2s2 2p6 3s1
Ar: s2 2s2 2p6 3s2 3p6
As we move from left to right, and ignoring the already-filled 1s, 2s, and 2p orbitals, the period three starting and ending elements have the following:
Na: 3s1
Ar: 3s2, 3p6
All the new electrons electrons filled the third energy level (3s and 3p). So the energy level does not change, just the orbitals.
Answer:
C:to the right side of the periodic table, and it is given
the suffix -ide.
Answer:

Explanation:
The work function of the sodium= 495.0 kJ/mol
It means that
1 mole of electrons can be removed by applying of 495.0 kJ of energy.
Also,
1 mole =
So,
electrons can be removed by applying of 495.0 kJ of energy.
1 electron can be removed by applying of
of energy.
Energy required =
Also,
1 kJ = 1000 J
So,
Energy required =
Also,
Where,
h is Plank's constant having value
c is the speed of light having value
So,
Also,
1 m = 10⁻⁹ nm
So,

Answer:
B 1.23 g/cc
Explanation:
For something to float on seawater, the density must be less than 1.03 g/mL. If the object sinks, the density is greater than 1.03 g/mL.
Let’s examine the answer choices. Keep in mind, the ice berg is mostly below the water level.
A. 0.88 g/cc
This is less than 1.03 g/cc, which would result in floating.
B. 1.23 g/cc
This is the best answer choice. The iceberg is mostly beneath the water, but some of it is exposed. The density is greater than 1.03 g/mL, but not so much greater that it would immediately sink.
C. 0.23 g/cc
This is less than 1.03 g/cc, which would produce floating.
D. 4.14 g/cc
This is much greater than 1.03 g/cc and the result would be sinking.
Answer:
all of the above
Explanation:
i got the answer right on cK-12