Autoionization Reactions are those reactions in which ions or molecules ionizes spontaneously without adding any external reagent.
For Example,
Autoionization of water.
H₂O + H₂O ⇆ H₃O⁺ + OH⁻
Autoionization reaction of Methanol is shown below,
Answer:
hydrogen ions
Explanation:
because acid is the specie that have ability to donate proton or forming bond with electron pair
Answer:
Molecular formula = C20H30
Explanation:
NB 440mg = 0.44g, 135mg= 0.135g
From the question, moles of CO2= 0.44/44= 0.01mol
Since 1 mol of CO2 contains 1mol of C, it implies mol of C = 0.01
Also from the question, moles of H2O = 0.135/18= 0.0075mole
Since 1 mol of H2O contains 2mol of H, it implies mol of H = 0.0075×2= 0.015 mol of H
To get the empirical formula, divide by smallest number of mole
Mol of C = 0.01/0.01=1
Mol of H = 0.015/0.01= 1.5
Multiply both by 2 to obtain a whole number
Mol of C =1×2 = 2
Mol of H= 1.5×2 = 3
Empirical formula= C2H3
[C2H3] not = 270
[ (2×12) + 3]n = 270
27n = 270
n=10
Molecular formula= [C2H3]10= C20H30
Answer:
643g of methane will there be in the room
Explanation:
To solve this question we must, as first, find the volume of methane after 1h = 3600s. With the volume we can find the moles of methane using PV = nRT -<em>Assuming STP-</em>. With the moles and the molar mass of methane (16g/mol) we can find the mass of methane gas after 1 hour as follows:
<em>Volume Methane:</em>
3600s * (0.25L / s) = 900L Methane
<em>Moles methane:</em>
PV = nRT; PV / RT = n
<em>Where P = 1atm at STP, V is volume = 900L; R is gas constant = 0.082atmL/molK; T is absolute temperature = 273.15K at sTP</em>
Replacing:
PV / RT = n
1atm*900L / 0.082atmL/molK*273.15 = n
n = 40.18mol methane
<em>Mass methane:</em>
40.18 moles * (16g/mol) =
<h3>643g of methane will there be in the room</h3>
I think convergent but could be wrong