Answer:
- <u><em>Ratio of the mass carbon that combines with 1.00 g of oxygen in compound 2 to the mass of carbon that combines with 1.00 g of oxygen in compound 1 = 2</em></u>
Explanation:
First, detemine the mass of oxygen in the two samples by difference:
- mass of oxygen = mass of sample - mass of carbon
Item Compound 1 Compound 2
Sample 80.0 g 80.0 g
Carbon 21.8 g 34.3 g
Oxygen: 80.0 g - 21.8g = 58.2 g 80.0 g - 34.3 g = 45.7 g
Second, determine the ratios of the masses of carbon that combine with 1.00 g of oxygen:
- For each sample, divide the mass of carbon by the mass of oxygen determined above:
Sample Mass of carbon that combines with 1.00 g of oxygen
Compound 1 21.8 g / 58.2 g = 0.375
Compound 2 34.3 g / 45.7 g = 0.751
Third, determine the ratio of the masses of carbon between the two compounds.
- Divide the greater number by the smaller number:
- Ratio = 0.751 / 0.375 = 2.00 which in whole numbers is 2
It's B ------------------------------------
The force upon a moving object
Atoms show us the basic proverb about the strength and the bond when they are Unity and Diversified.
<u>Explanation:</u>
- Every basic matter in the earth is composed of atoms. It is the smallest unit of the matter which is taken to observe the properties of the whole element.
- The atom consists of different energy levels and consist of protons electrons and neutrons.
- The atoms when are compactly arranged it result in the great strength required to bring the deformation in shape which shows that unity is always great.
- But in the liquid and gas, the atoms are arranged in a randomly dispersed pattern which shows that they can be separated and involved in any process easier to get the heterogeneous product easily which is an example for Diversity.
I believe it would be the first option. It forms iron oxide (rust) when exposed to moisture and air.