Answer:
C2H3Br + O2 → CO2 + H2O + HBr
Explanation:
The term balancing of chemical reaction equation has a unique meaning in chemistry. What it actually means is to ensure that the number of atoms of each element on the left hand side of reaction equation becomes equal to the number of atoms of the same element on the right hand side of the reaction equation.
When we look at the equation; C2H3Br + O2 → CO2 + H2O + HBr, the number of atoms of each element on the left and right hand sides of the given equation are not the same hence the equation is unbalanced.
If we look at the equation; 2C2H3Br + 5O2 → 4CO2 + 2H2O + 2HBr, the number of atoms of each element on both sides of the reaction equation are now equal, thus the later equation is the balanced version of the former.
<u>Answer:</u> The solubility of
in water is 
<u>Explanation:</u>
The balanced equilibrium reaction for the ionization of cadmium phosphate follows:

3s 2s
The expression for solubility constant for this reaction will be:
![K_{sp}=[Cd^{2+}]^3[PO_4^{3-}]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BCd%5E%7B2%2B%7D%5D%5E3%5BPO_4%5E%7B3-%7D%5D%5E2)
We are given:

Putting values in above equation, we get:

Hence, the solubility of
in water is 
Altitude is height above sea level. The density of air decreases with height. There are two reasons, at higher altitudes there is less air pushing down from above,and gravity is weaker farther from earths center.
163 lb * 1 kg / 2.205 lb * 15.0 mg/kg = 1108.8 mg or about 1.11 g
This problem is requiring the empirical formula for CaCO₃, which is its molecular formula, and turns out to be equal, this is A. CaCO3 according to the following:
<h3>Empirical formulas:</h3><h3 />
In chemistry, molecular formulas show both the actual type and number of atoms in a chemical compound, based on the elements across the periodic table and the subscripts standing for the number of atoms in the compound.
However, the empirical formula is a reduced expression of the molecular one, which shows the minimum number of atoms in a compound after simplifying to the smallest whole numbers.
In such a way, since the given compound is CaCO₃ and both Ca and C have a one as their subscript, it is not possible to simplify any further and therefore the empirical formula equals the molecular one this time, making the answer to be A. CaCO3.
Learn more about empirical formulas: brainly.com/question/1247523