Answer:
the wave represents the second harmonic.
Explanation:
Given;
length of the cord, L = 64 cm
The first harmonic of a cord fixed at both ends is given as;

The wavelength of a standing wave with two antinodes is calculated as follows;
L = N---> A -----> N + N ----> A -----> N
Where;
N is node
A is antinode
L = N---> A -----> N + N ----> A -----> N = λ/2 + λ/2
L = λ
The harmonic is calculated as;

Therefore, the wave represents the second harmonic.
L = λ
Heat flow occurs when two systems in contact are not at the same temperature.
What is heat flow?
- when two bodies of different temperatures are in contact, heat flow takes place.
- Heat flows till the two bodies in contact achieve equilibrium.
- To achieve equilibrium, heat flows from hotter bodies to colder bodies.
- There is no heat flow after achieving the state of equilibrium because the amount of heat flow from one body to the other is the same.
For more information, please visit: brainly.com/question/11297584?referrer=searchResults
#SPJ4
Answer:
θ₀ = 84.78° (OR) 5.22°
Explanation:
This situation can be treated as projectile motion. The parameters of this projectile motion are:
R = Range of Projectile = 150 m
V₀ = Launch Speed of Projectile = 90 m/s
g = 9.8 m/s²
θ₀ = Launch angle (OR) Angle of Elevation = ?
The formula for range of a projectile is given as:
R = V₀² Sin 2θ₀/g
Sin 2θ₀ = Rg/V₀²
Sin 2θ₀ = (150 m)(9.8 m/s²)/(90 m/s)²
2θ₀ = Sin⁻¹ (0.18)
θ₀ = 10.45°/2
<u>θ₀ = 5.22°</u>
Also, we know that for the same launch velocity the range will be same for complementary angles. Therefore, another possible value of angle is:
θ₀ = 90° - 5.22°
<u>θ₀ = 84.78°</u>
Answer:
3.38 m/s
Explanation:
Mass of child = m₁ = 25
Initial speed of child = u₁ = 5 m/s
Initial speed of cart = u₂ = 0 m/s
Mass of cart = m₂ = 12 kg
Velocity of cart with child on top = v
This is a case of perfectly inelastic collision

Velocity of cart with child on top is 3.38 m/s