1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xeze [42]
3 years ago
7

Concerned with the number of maintenance visits the rocket can undergo before being out of service, you have been informed that

the recent statics show a that after the first journey to the outer space, the rocket was sent to service once, and after that the number of maintenance visits increase by 1 after every journey, for instance, after the second journey, the rocket had to go to service twice before being re-used, three-times after the 3rd use and so on.
A. Generate a rule for the number of visits to the maintenance department with respect to space journeys, is this rule arithmetic or geometric.
B. How many journeys will it take to for the number of service visits after a certain journey exceed 10?
C. The rocket is not to be re-used again if the total number of maintenance visits exceed 50, then how many journeys will a single rocket serve before being out of service?
Engineering
1 answer:
Ainat [17]3 years ago
7 0

Answer:

(a) Mn = M₁ + (n-1) (M₂ -M₁) = 1 + (n- 1) 1 = n (b) n > 10 (exceed 10) or n =11 (c) n >50 or n= 51

After making a journey of 51 times, the rocket will be discarded

Explanation:

Solution

(a) Let Mn denotes the number of  maintenance visits after the nth journey

Then M₁ = 1 , M₂ = 1 +M₁ = 2, M₃ = 1 +M₂ = 3

We therefore, notice that M follows an arithmetic sequence

So,

Mn = M₁ + (n-1) (M₂ -M₁)

= 1 + (n- 1) 1 = n

or Mn =n

(b)  For what value of n we will get  fro Mn > 10

Thus,

n > 10 (exceed 10) or n =11

(c)Similarly of Mn is greater than 50 or Mn>50, the rocket will not be used or reused

So,

n >50 or n= 51

After making a journey of 51 times, the rocket will be discarded

You might be interested in
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
Several different loads are going to be used with the voltage divider from Part A. If the load resistances are 300 kΩkΩ , 200 kΩ
harina [27]

Answer:

attached below

Explanation:

7 0
3 years ago
A gas tank is known to have a thickness of 0.5 inches and an internal pressure of 2.2 ksi. Assuming that the maximum allowable s
sergiy2304 [10]

Answer:

D_o=11.9inch

Explanation:

From the question we are told that:

Thickness T=0.5

Internal PressureP=2.2Ksi

Shear stress \sigma=12ksi

Elastic modulus \gamma= 35000

Generally the equation for shear stress is mathematically given by

 \sigma=\frac{P*r_1}{2*t}

Where

r_i=internal Radius

Therefore

 12=\frac{2.2*r_1}{2*0.5}

 r_i=5.45

Generally

 r_o=r_1+t

 r_o=5.45+0.5

 r_o=5.95

Generally the equation for outer diameter is mathematically given by

 D_o=2r_o

 D_o=11.9inch

Therefore

Assuming that the thin cylinder is subjected to integral Pressure

Outer Diameter is

 D_o=11.9inch

7 0
3 years ago
Electric current originates from which part of an atom? *
yanalaym [24]

Answer: Electric current originates from positively charged protons negatively charged electrons of an atom.

Explanation:

The movement of ions (positive or negative) from one point to another is called electric current.

An atom has three sub-atomic particles. These are protons, neutrons and electrons.

Protons are positively charged, neutrons have no charge and electrons are negatively charged. Protons and neutrons reside inside the nucleus of an atom whereas electrons revolve around the nucleus.

So, protons and electrons are responsible for originating electric current form an atom as these are the charged particles.

Thus, we can conclude that electric current originates from positively charged protons negatively charged electrons of an atom.

3 0
2 years ago
Consider steady, incompressible, laminar flow of a Newtonian fluid in an infinitely long round pipe annulus of inner radius Ri a
svetlana [45]

Answer:

is it multiple choice?

Explanation:

8 0
3 years ago
Other questions:
  • There are a number of requirements that employers must do to protect their workers from caught-in or
    12·1 answer
  • Help me! Phone Phoebe on 07375410044.
    7·2 answers
  • We would like to measure the density (p) of an ideal gas. We know the ideal gas law provides p= , where P represents pressure, R
    15·1 answer
  • What does it mean to wire solar cells in parallel vs. wiring them in series? I always get these switched around.​
    10·1 answer
  • 14. Tires are rotated to
    12·2 answers
  • You are given a C program "q2.c" as below. This program is used to calculate the average word length for a sentence (a string in
    5·1 answer
  • 2.44mW of incident 520 nm light is directed through a1 cm sample cuvette and 0.68 mW of Plight exits the sample what is the abso
    9·1 answer
  • ───────────────────────────────
    7·1 answer
  • What's the best way to find the load capacity of a crane?
    6·1 answer
  • Derive the expression ε=ln(1+e), where ε is the true strain and e is the engineering strain. Note that this expression is not va
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!