1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikklg [1K]
3 years ago
8

If a hoist lifts a 4500lb load 30ft in 15s, the power delivered to the load is a) 18.00hp b) 9000hp c) 16.36hp d) None of the ab

ove
Engineering
1 answer:
12345 [234]3 years ago
5 0

Answer:

Explanation:

load = 4500lb                   lift height= 30 ft

time =15 s

velocity=\frac{30}{15} ft/s

velocity=2 ft/s

power = force\times velocity

power={4500}\times2

power= 9000 lb ft/s

1 hp= 550 lb ft/s

power= \frac{9000}{550} =16.36 hp

You might be interested in
A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and a gage pressure of 300 kPa. If the gas
ch4aika [34]

Answer:

gauge pressure is 133 kPa

Explanation:

given data

initial temperature T1 = 27°C = 300 K

gauge pressure = 300 kPa = 300 × 10³ Pa

atmospheric pressure = 1 atm

final temperature T2 = 77°C = 350 K

to find out

final pressure

solution

we know that gauge pressure is = absolute pressure - atmospheric pressure so

P (gauge ) = 300 × 10³ Pa - 1 × 10^{5} Pa

P (gauge ) = 2 × 10^{5} Pa

so from idea gas equation

\frac{P1*V1}{T1} = \frac{P2*V2}{T2}   ................1

so {P2} = \frac{P1*T2}{T1}

{P2} = \frac{2*10^5*350}{300}

P2 = 2.33 × 10^{5} Pa

so gauge pressure = absolute pressure - atmospheric pressure

gauge pressure = 2.33 × 10^{5}  - 1.0 × 10^{5}

gauge pressure = 1.33 × 10^{5} Pa

so gauge pressure is 133 kPa

4 0
3 years ago
When determining risk, it is necessary to estimate all routes of exposure in order to determine a total dose (or CDI). Recognizi
Allushta [10]

Answer:

The following are the solution to this question:

Explanation:

The Formula for calculating CDI:

\bold{CDI = \frac{C \times CR \times EF \times ED}{BW \times AT}}

_{where} \\ CDI = \text{Chronic daily Intake rate}  (\frac{mg}{kg-day})} \\\\\text{C = concentration of Toluene}\\\\\text{CR = contact rate} \frac{L}{day}\\\\\text{EF = Exposure frequency} \frac{days}{year}\\\\\text{ED = Exposure duration (in years)} = 10 \ \ years\\\\\text{BW = Body weight (kg) = 70 kg for adult}\\\\ \text{AT = average period of exposure (days) }

calculating the value of AT:

=  365 \frac{days}{year}  \times  70 \ year  \\\\ = 25550 \ days

 calculating the value of Intake based drinking:

C = 1 \ \frac{mg}{L}

CR = 2 \frac{L}{day} Considering that adult females eat 2 L of water a day,

EF = 350 \frac{days}{year} for drink

calculating the CDI value:

\to CDI = \frac{(1 \times 2 \times 350 \times 10)}{(70 \times  25550)}\\\\

             = \frac{(2 \times 3500)}{(70 \times  25550)}\\\\ = \frac{(7000)}{(70 \times  25550)}\\\\ = \frac{(100)}{(25550)}\\\\=0.00391 \frac{mg}{ kg-day}

Centered on inhalation, intake:

C = \frac{1 \mu g} { m^3} \ \ \  or \ \ \ \ 0.001  \ \ \frac{mg}{m^3}\\\\CR = 20  \frac{m^3}{day}\\\\EF = 15 \frac{min}{day}  \ \ or\ \  5475 \frac{min}{yr} \ \ \  or \ \  3.80 \frac{days}{year}\\

calculating the value of CDI:

\to CDI = \frac{(0.001 \times 20 \times 3.80 \times 10)}{(70 \times 25550)}

             = \frac{(0.76)}{(1788500)}\\\\= 4.24 \times 10^{-7} \ \ \frac{mg}{kg-day}

7 0
3 years ago
Determine the depreciation expense for 2018 and 2019 using the following​ methods: (a)​ Straight-line (SL),​ (b) Units of produc
prohojiy [21]

Answer:

Check Explanation.

Explanation:

(1). The straight-line method: the general clue with this method is that in the two years, depreciation is the same. The formula for Calculating depreciation is given below;

straight-line method = (cost - Residual value)/ useful life in years.

From the question we know that the cost of acquisition is $30,000,000, the residual value of the asset is $4,000,000 and useful life is 7 years. Therefore;

straight-line method = ($30,000,000 - $4,000,000)/ 7.

= $3, 714,285.71 Per year.

That is $3, 714,285.71 for 2018 and 2019.

(2).Units of production​ (UOP) = (cost - Residual value)/ useful life in units.

= ($30,000,000 - $4,000,000)/ 4,375, 000.

Units of production​ (UOP) = $6 per mile.

Hence, the depreciation in 2018 = Depreciation per unit × 2018 year usage.

= 6 × 1,100,000 mile.

= $6,600,000.

depreciation in 2019 = Depreciation per unit × 2019 year usage.

= 6 × 1,200,000.

= $7,200,000.

Double-declining-balance​ (DDB)= (cost - accumulated depreciation) × 2 × 1/(useful life years).

Double-declining-balance​ (DDB) = (30,000,000 - 0)× 2 × (1/7).

= $8,571,428.57 depreciation in 2018.

= $8,571,428.6 depreciation in 2018

Double-declining-balance​ (DDB) = (30,000,000 - 8,571,428.57) × 2 × 1/7.

= $6,122,449.00 depreciation in 2019.

====================================================================

Total depreciation for straight-line method(2018 and 2019) = $7,428,571.42.

Total depreciation for Units of production​ (UOP)(2018 and 2019) = $13,800,000.

Total depreciation for Double-declining-balance (DDB)= $ 14,693,877.6.

5 0
3 years ago
Oliver is designing a new children's slide to increase speed at which a child can descend.His first design involved steel becaus
Ede4ka [16]

Answer:

Steel can rusts easily in the presence of moisture and oxygen, and tarnishes as the rust progresses.

Explanation:

Steel is an alloy of carbon and iron. it is a very useful alloy that is found in almost any engineered piece. The problem with steel is that it is very susceptible to rust, and the cost of maintaining it in order to prevent rust is very high. Steel rusts in the presence of moisture and oxygen (rust is an oxidation-reduction process). Using it as a water slide exposes it constantly to moisture, and to prevent it from rusting in this case will involve a lot of maintenance cost, which is why steel is not advisable to be used in this case.

4 0
3 years ago
Vehicles begin arriving at an amusement park 1 hour before the park opens, at a rale of four vehicles per minute. The gale to th
Alina [70]

Answer:

a) ≈ 30 mins

b) 8 vpm

Explanation:

<u>a) Determine how long after the first vehicle arrival will the queue dissipate</u>

The time after the arrival of the first vehicle for the queue to dissipate

= 29.9 mins ≈ 30 mins

<u>b) Determine the average service rate at the parking lot gate </u>

U = A / t

where : A = 240 vehicles , t = 30

U = 240 / 30 = 8 Vpm

attached below is a detailed solution of the given problems above

3 0
3 years ago
Other questions:
  • CONVEYOR PROGRAM: A conveyor will run when any one of four inputs are on. It will stop when any one of four other inputs are on.
    14·1 answer
  • Will give brainliest to whoever answers correctly!!!!
    5·2 answers
  • Giving 100 points for answer plzz
    10·2 answers
  • Who else ships it????????
    6·1 answer
  • What are the main subsystem of GSM<br> network​
    15·1 answer
  • If you could drive one car for the rest of your life what would it be? Type in comments if you want to answer. Mine is either a
    9·1 answer
  • when you are performing an advanced filter, in which argument box do you enter the range for the dataset?
    14·1 answer
  • Which of the following BEST represents the causes of stiff muscles?
    12·1 answer
  • Calculate area moment of inertia for a circular cross section with 6 mm diameter
    7·1 answer
  • Question 9
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!