Answer:
As b ∝ (L/r²) and
the distance of the sun from the earth is 0.00001581 light years
and
the distance of the Sirius from the earth is 8.6 light years
hence,
the Sun appear brighter in the sky
Explanation:
The brightness (b) is directly proportional to the Luminosity of the star (L) and inversely proportional to the square of the distance between the star and the observer (r).
thus, mathematically,
b ∝ (L/r²)
now,
given
L for sirius is 23 times more than the sun i.e 23L
now,
the distance of the sun from the earth is 0.00001581 light years
and
the distance of the Sirius from the earth is 8.6 light years
thus,
using the the relation between conclude that the value of brightness for the Sirius comes very very low as compared to the value for brightness for the Sun.
hence, the sun appears brighter
Answer:
<em>Well, I think the best answer will be is </em><em>1.59 g/mL Good Luck!</em>
There are two general types of collisions, inelastic and elastic.
Inelastic collisions occur when two objects collide but neither of them bounce away from each other.
Collisions in which the objects do not touch each other are elastic. (Ex: Rutherford Scattering)
Answer:
<h2>3.3 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 10 m/s²
From the question we have
PE = 1.5 × 10 × 0.22
We have the final answer as
<h3>3.3 J</h3>
Hope this helps you