Supposing the runner is condensed to a point and moves upward at 2.2 m/s.
It takes a time = 2.2/g = 2.2/9.8 = 0.22 seconds to increase to max height.
Now looking at this condition in opposite - that is the runner is at max height and drops back to earth in 0.22 s (symmetry of this kind of motion).
From what height does any object take 0.22 s to fall to earth (supposing there is no air friction)?
d = 1/2gt²= (0.5)(9.8)(0.22)²= 0.24 m
It's just asking you to sit down and COUNT the little squares in each sector.
It'll help you keep everything straight if you take a very sharp pencil and make a tiny dot in each square as you count it. That way, you'll be able to see which ones you haven't counted yet, and also you won't count a square twice when you see that it already has a dot in it.
(If, by some chance, this is a picture of the orbit of a planet revolving around the sun ... as I think it might be ... then you should find that both sectors jhave the same number of squares.)
I'm not sure what "60 degree horizontal" means.
I'm going to assume that it means a direction aimed 60 degrees
above the horizon and 30 degrees below the zenith.
Now, I'll answer the question that I have invented.
When the shot is fired with speed of 'S' in that direction,
the horizontal component of its velocity is S cos(60) = 0.5 S ,
and the vertical component is S sin(60) = S√3/2 = 0.866 S . (rounded)
-- 0.75 of its kinetic energy is due to its vertical velocity.
That much of its KE gets used up by climbing against gravity.
-- 0.25 of its kinetic energy is due to its horizontal velocity.
That doesn't change.
-- So at the top of its trajectory, its KE is 0.25 of what it had originally.
That's E/4 .
<span>Electromagnetic
radiation are represented in waves. Each type of wave has a certain shape and
length. The distance between two peaks in a wave is called the wavelength. It
is indirectly related to the frequency which is the number of wave that pass
per unit of time. Wavelength is equal to the speed of light divided by the
frequency. We calculate as follows:
Wavelength = </span>300,000,000 m/sec / <span>650,000,000,000,000 per second
Wavelength = 4.62x10^-4 m</span>
Eris is slightly more massive than Pluto. However, both of them are smaller than Earth's Moon.
This should conclude that Eris is a dwarf planet.