<span>Molar mass is the mass of
one mole of a substance, it can be a chemical element or a compound. It is a
characteristic of each pure substance. We calculate it by adding up all of the masses of the atoms involved in the compound. We calculate as follows:
atomic mass total mass
C 17 12.01 g/mol 204.17 g/mol
H 19 1.01 g/mol 19.19 g/mol
N 1 14.00 g/mol 14.00 g/mol
O 3 16.00 g/mol 48.00 g/mol
------------------------------------------------------------
Molar mass = 285.36 g/mol
</span><span>What is the mass of 6.02 x 10^24 molecules of morphine?
</span>6.02 x 10^24 molecules ( 1 mol / 6.02x10^23 molecules) ( 285.36 g/mol) = 2853.6 g morphine
Answer:
ECUACIÓN:HClO 2 + H 2O → ClO− 2 + H 3O
ACIDO: HClO2
BASECONJUGADA:ClO-2
Explanation:
Answer:
c
the cycling of water in and out of the atmosphere
Yeah so you have to start of with converting your first two values into moles (forget the third one)
97.5 g NO * 1 mol/30.01 g NO = 3.25 moles NO
88.0 g O2 * 1 mol/16.00 g O2 = 5.5 moles O2
now we can find the limiting reactant by checking for the amount of product each reactant should give us by using molar ratios
3.25 mol NO * 2 mol NO2/2 mol NO = 3.25 mol NO2
5.5 mol O2 * 2 mol NO2/ 1 mol O2 = 11
so NO is the limiting reactant since it produces less product/gets used up quicker
3.25 mol NO * 2 mol NO2/2molNO = 3.25 mol NO2
so this is our theoretical yield and the question provides us with the actual yield (2.68 moles). since the actual yield is given in moles, we don't have to convert to grams. our percent yield formula goes like: actual yield/theoretical yield * 100
2.68 mol/3.25 mol * 100 = 82.46%