A conductor that is conducting current generates a magnetic field everywhere around it. This magnetic field exerts force on the compass's magnetic needle, causing the needle to deviate.
Definition of Maxwell's rule
A current-conducting conductor creates a magnetic field everywhere around it. The magnetic needle of the compass experiences force from this magnetic field, which causes the needle to veer.
Equation for deflection
We have so far established that the total flux of electric field out of a closed surface is just the total enclosed charge multiplied by 1/ε0, ∫→E⋅d→A=q/ε0. This is Maxwell's first equation. It represents completely covering the surface with a large number of tiny patches having areas d→A.
To learn more about magnetic field refer : brainly.com/question/24761394
#SPJ4
First let us calculate for the angle of inclination using
the sin function,
sin θ = 1 m / 4 m
θ = 14.48°
Then we calculate the work done by the movers using the
formula:
W = Fnet * d
So we must calculate for the value of Fnet first. Fnet is
force due to weight minus the frictional force.
Fnet = m g sinθ – μ m g cosθ
Fnet = 1,500 sin14.48 – 0.2 * 1,500 * cos14.48
Fnet = 84.526 N
So the work exerted is equal to:
W = 84.526 N * 4 m
<span>W = 338.10 J</span>
Hmm, I got that the wavelength is 500 meters.
Answer:
First is incrcersing mangnetic field second photosphere
Explanation:
sorry if the first one is wrong