Answer:
-973 KJ
Explanation:
The balanced reaction equation is;
N2H4(aq) + 2Cl2(g) + 4OH^-(aq)---------> 4Cl-(aq) + 4H ^+(aq) + 4OH^-(aq) + N2(g)
Reduction potential of hydrazine = -1.16 V
Reduction potential of chlorine = 1.36 V
From;
E°cell= E°cathode - E°anode
E°cell= 1.36 - (-1.16)
E°cell= 2.52 V
∆G°=- nFE°cell
n= number of moles of electrons = 4
F= Faraday's constant = 96500 C
E°cell = 2.52 V
∆G°=- (4 × 96500 × 2.52)
∆G°= -972720 J
∆G°= -972.72 KJ
Answer:
Value of
for the given redox reaction is 
Explanation:
Redox reaction with states of species:

Reaction quotient for this redox reaction:
![Q_{p}=\frac{[Cr^{3+}]^{2}.P_{Cl_{2}}^{3}}{[H^{+}]^{14}.[Cr_{2}O_{7}^{2-}].[Cl^{-}]^{6}}](https://tex.z-dn.net/?f=Q_%7Bp%7D%3D%5Cfrac%7B%5BCr%5E%7B3%2B%7D%5D%5E%7B2%7D.P_%7BCl_%7B2%7D%7D%5E%7B3%7D%7D%7B%5BH%5E%7B%2B%7D%5D%5E%7B14%7D.%5BCr_%7B2%7DO_%7B7%7D%5E%7B2-%7D%5D.%5BCl%5E%7B-%7D%5D%5E%7B6%7D%7D)
Species inside third braket represent concentration in molarity, P represent pressure in atm and concentration of
is taken as 1 due to the fact that
is a pure liquid.
![pH=-log[H^{+}]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%7B%2B%7D%5D)
So, ![[H^{+}]=10^{-pH}](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%3D10%5E%7B-pH%7D)
Plug in all the given values in the equation of
:
