1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
artcher [175]
3 years ago
8

One recently discovered extrasolar planet, or exoplanet, orbits a star whose mass is 0.70 times the mass of our sun. This planet

has been found to have 2.3 times the earth's diameter and 7.9 times the earth's mass. Observations of this planet over time show that it is in a nearly circular orbit around its star and completes one orbit in only 9.5 days. How many times the orbital radius r of the earth around our sun is the exoplanet's orbital radius around its sun. Assume that the earth is also in a nearly circular orbit.
a.) 0.026r
b.) 0.078r
c.) 0.70r
d,) 2.3r
Physics
1 answer:
Stels [109]3 years ago
7 0

0.078 times the orbital radius r of the earth around our sun is the exoplanet's orbital radius around its sun.

Answer: Option B

<u>Explanation:</u>

Given that planet is revolving around the earth so from the statement of centrifugal force, we know that any

               \frac{G M m}{r^{2}}=m \omega^{2} r

The orbit’s period is given by,

               T=\sqrt{\frac{2 \pi}{\omega r^{2}}}=\sqrt{\frac{r^{3}}{G M}}

Where,

T_{e} = Earth’s period

T_{p} = planet’s period

M_{s} = sun’s mass

r_{e} = earth’s radius

Now,

             T_{e}=\sqrt{\frac{r_{e}^{3}}{G M_{s}}}

As, planet mass is equal to 0.7 times the sun mass, so

            T_{p}=\sqrt{\frac{r_{p}^{3}}{0.7 G M_{s}}}

Taking the ratios of both equation, we get,

             \frac{T_{e}}{T_{p}}=\frac{\sqrt{\frac{r_{e}^{3}}{G M_{s}}}}{\sqrt{\frac{r_{p}^{3}}{0.7 G M_{s}}}}

            \frac{T_{e}}{T_{p}}=\sqrt{\frac{0.7 \times r_{e}^{3}}{r_{p}^{3}}}

            \left(\frac{T_{e}}{T_{p}}\right)^{2}=\frac{0.7 \times r_{e}^{3}}{r_{p}^{3}}

            \left(\frac{T_{e}}{T_{p}}\right)^{2} \times \frac{1}{0.7}=\frac{r_{e}^{3}}{r_{p}^{3}}

           \frac{r_{e}}{r_{p}}=\left(\left(\frac{T_{e}}{T_{p}}\right)^{2} \times \frac{1}{0.7}\right)^{\frac{1}{3}}

Given T_{p}=9.5 \text { days } and T_{e}=365 \text { days }

          \frac{r_{e}}{r_{p}}=\left(\left(\frac{365}{9.5}\right)^{2} \times \frac{1}{0.7}\right)^{\frac{1}{3}}=\left(\frac{133225}{90.25} \times \frac{1}{0.7}\right)^{\frac{1}{3}}=(2108.82)^{\frac{1}{3}}

         r_{p}=\left(\frac{1}{(2108.82)^{\frac{1}{3}}}\right) r_{e}=\left(\frac{1}{12.82}\right) r_{e}=0.078 r_{e}

You might be interested in
A 9 volt battery produces a current of 0.2A. What is the resistance?
nekit [7.7K]
9/0.2 would be the ans
4 0
3 years ago
This diagram shows the forces acting on a car. The center dot represents the car, a the arrows represent the forces acting on th
mylen [45]
Need diagram right? Post it
5 0
3 years ago
Since astronauts in orbit are apparently weightless, a clever method of measuring their masses is needed to monitor their mass g
monitta

Answer:

55.56kg

Explanation:

Given:

F= 52N

a=0.936m/s²

Applyinc Newton's second law, that states: force is equal to mass times acceleration.

F = ma

m=F/a =>52 / 0.936

m=55.56kg

5 0
4 years ago
Tutorial Exercise An unstable atomic nucleus of mass 1.83 10-26 kg initially at rest disintegrates into three particles. One of
kogti [31]

Answer:

A) v3 = -[6.29 × 10^(6)]j^ - [7.06 × 10^(6)]i^

B) K_total = 373.08 × 10^(-15) J

Explanation:

We are given;

Mass of unstable atomic nucleus; M = 1.83 × 10^(-26) kg

Mass of first particle; m1 = 5.03 × 10^(-27) kg

Speed of first particle in y-direction; v1 = (6 × 10^(6) m/s) j^

Mass of second particle; m2 = 8.47 × 10^(-27) kg

Speed of second particle in x - direction; v2 = (4 × 10^(6) m/s) i^

Now, we don't have the mass of the third particle but since we are told the unstable atomic nucleus disintegrates into 3 particles, thus;

M = m1 + m2 + m3

1.83 × 10^(-26) = (5.03 × 10^(-27)) + (8.47 × 10^(-27)) + m3

m3 = (1.83 × 10^(-26)) - (13.5 × 10^(-27))

m3 = 4.8 × 10^(-27) kg

A) Applying law of conservation of momentum, we have;

MV = (m1 × v1) + (m2 × v2) + (m3 × v3)

Now, the unstable atomic nucleus was at rest before disintegration, thus V = 0 m/s.

Thus, we now have;

0 = (m1 × v1) + (m2 × v2) + (m3 × v3)

We want to find the velocity of the third particle v3. Let's make it the subject of the formula;

v3 = [(m1 × v1) + (m2 × v2)]/(-m3)

Plugging in the relevant values, we have;

v3 = [(5.03 × 10^(-27) × 6 × 10^(6))j^ + (8.47 × 10^(-27) × 4 × 10^(6))i^]/(-4.8 × 10^(-27))

v3 = [(30.18 × 10^(-21))j^ + (33.88 × 10^(-21))i^]/(-4.8 × 10^(-27))

v3 = -[6.29 × 10^(6)]j^ - [7.06 × 10^(6)]i^

B) Formula for kinetic energy is;

K = ½mv²

Now,total kinetic energy is;

K_total = K1 + K2 + K3

K1 = ½ × 5.03 × 10^(-27) × (6 × 10^(6))²

K1 = 90.54 × 10^(-15) J

K2 = ½ × 8.47 × 10^(-27) × (4 × 10^(6))²

K2 = 67.76 × 10^(-15)

To find K3, let's first find the magnitude of v3 because it's still in vector form.

Thus;

v3 = √[(-6.29 × 10^(6))² + (-7.06 × 10^(6))²]

v3 = 9.46 × 10^(6) m/s

K3 = ½ × 4.8 × 10^(-27) × (9.46 × 10^(6))²

K3 = 214.78 × 10^(-15) J

K_total = (90.54 × 10^(-15)) + (67.76 × 10^(-15)) + (214.78 × 10^(-15))

K_total = 373.08 × 10^(-15) J

7 0
3 years ago
Robin Hood wishes to split an arrow already in the bull's-eye of a target 40 m away.
tamaranim1 [39]

Answer:

5.843 m

Explanation:

suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.

lets consider that horizontal motion

distance = speed * time

time = 40/ 37 = 1.081 s

arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.

applying motion equation

(assume g = 10 m/s²)

s=ut+\frac{1}{2}*gt^{2}  \\= 0+\frac{1}{2}*10*1.081^{2}\\= 5.843 m

Arrow misses the target by 5.843m ig the arrow us split horizontally

4 0
3 years ago
Other questions:
  • What occurs when large change direction after colliding with particles of matter
    11·1 answer
  • A solid sphere, solid cylinder, and a hollow pipe all have equal masses and radii and are of uniform density. If the three are r
    6·1 answer
  • A ship tows a submerged cylinder, which is 1.5 m in diameter and 22 m long, at 5 m/s in fresh water at 208C. Estimate the towing
    13·2 answers
  • Atoms of the same element with varying number of neutrons are called
    10·1 answer
  • The student draws an arrow on the paper to mark the incident ray. She marks the
    10·1 answer
  • When two trains, going in opposite directions, are passing on tracks that are laid out close together, the train cars can often
    5·2 answers
  • A rock on earth has a weight of 135 Newtons. What is its mass?
    8·1 answer
  • It is made up of small particles
    5·2 answers
  • A 2.0-kg projectile is fired with initial velocity components v0x = 30 m/s and v0y = 40 m/s from a point on the Earth's surface.
    12·1 answer
  • What is the resistance of an electric frying pan that draws 12 amperes of current when connected to 120 Volt circuit
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!