I would say that this is the first law of thermodynamics.
Answer:
l= 4 mi : width of the park
w= 1 mi : length of the park
Explanation:
Formula to find the area of the rectangle:
A= w*l Formula(1)
Where,
A is the area of the rectangle in mi²
w is the width of the rectangle in mi
l is the width of the rectangle in mi
Known data
A = 4 mi²
l = (w+3)mi Equation (1)
Problem development
We replace the data in the formula (1)
A= w*l
4 = w* (w+3)
4= w²+3w
w²+3w-4= 0
We factor the equation:
We look for two numbers whose sum is 3 and whose multiplication is -4
(w-1)(w+4) = 0 Equation (2)
The values of w for which the equation (2) is zero are:
w = 1 and w = -4
We take the positive value w = 1 because w is a dimension and cannot be negative.
w = 1 mi :width of the park
We replace w = 1 mi in the equation (1) to calculate the length of the park:
l= (w+3) mi
l= ( 1+3) mi
l= 4 mi
Answer:
11.23%
Explanation:
Lets take
Speed of man in still water =u= 1.73 m/s
Speed of flow of water = v=0.52 m/s
When swims in downward direction then speed of man = u + v
When swims in upward direction then speed of man = u - v
Lets time taken by man when he swims in downward direction is
and when he swims in downward direction is
Lets distance is d and it will be remain constant in both the case




Time taken in still water
2 d= t x 1.73
t=1.15 x d sec


total time in current = 0.82 +0.44 d=1.26 d sec
So the percentage time

Percentage time =11.32%
So it will take 11.32% more time as compare to still current.
Several short trips taken from a cold start can use ...twice... as much fuel as a longer multi-purpose trip covering the same distance when the engine is warm.
In cold weather, properly designed gasoline aids in engine starting, while in hot weather, it helps prevent vapor lock. In order to meet the requirements of a modern engine, the fuel must have the volatility for which the engine's fuel system was built and an antiknock quality strong enough to prevent knock during routine operation.
During the intake phase, the air and fuel are combined before being introduced into the cylinder. The spark ignites the fuel-air mixture after the piston compresses it, resulting in combustion. During the power stroke, the piston is propelled by the expansion of the combustion gases.
To learn more about engine and fuel please visit -
brainly.com/question/5181209
#SPJ4