Answer:
k = 3.5 N/m
Explanation:
It is given that the time period the bob in pendulum is the same as its time period in spring mass system:


where,
k = spring constant = ?
g = acceleration due to gravity = 9.81 m/s²
m = mass of bob = 125 g = 0.125 kg
l = length of pendulum = 35 cm = 0.35 m
Therefore,

<u>k = 3.5 N/m</u>
They are trailing the same speed as it states in the question they are heeding toward each other a 70 mph <span />
Drop "moves" from the list for a moment.
You can also drop "stops moving", because that's included in "changes speed"
(from something to zero).
When an object changes speed or changes direction, that's called "acceleration".
I dropped the first one from the list, because an object can be moving,
and as long as it's speed is constant and it's moving in a straight line,
there's no acceleration.
I think you meant to say "starts moving". That's a change of speed (from zero
to something), so it's also acceleration.
Answer:
The work flow required by the compressor = 100.67Kj/kg
Explanation:
The solution to this question is obtained from the energy balance where the initial and final specific internal energies and enthalpies are taken from A-17 table from the given temperatures using interpolation .
The work flow can be determined using the equation:
M1h1 + W = Mh2
U1 + P1alph1 + ◇U + Workflow = U2 + P2alpha2
Workflow = P2alpha2 - P1alpha1
Workflow = (h2 -U2) - (h1 - U1)
Workflow = ( 684.344 - 491.153) - ( 322.483 - 229.964)
Workflow = ( 193.191 - 92.519)Kj/kg
Workflow = 100.672Kj/kg