The pressure of the gas is expected to increase in accordance to Boyle's law.
<h3>What is Boyle's law?</h3>
Boyle's law states that, the volume of a given mass of gas is inversely proportional to its pressure at constant temperature.
By implication, when the piston is lowered and the volume of the gas is decreased, the pressure of the gas is expected to increase in accordance to Boyle's law.
Learn more about Boyle's law: brainly.com/question/1437490
Answer:
A rule of thumb is that 1.5 lbs. of baking soda per 10,000 gallons of water will raise alkalinity by about 10 ppm. If your pool's pH is tested below 7.2, add 3-4 pounds of baking soda. If you're new to adding pool chemicals, start by adding only one-half or three-fourths of the recommended amount.
Answer:
M of HI = 5.4 M.
Explanation:
- We have the rule: at neutralization, the no. of millimoles of acid is equal to the no. of millimoles of the base.
<em>(XMV) acid = (XMV) base.</em>
where, X is the no. of (H) or (OH) reproducible in acid or base, respectively.
M is the molarity of the acid or base.
V is the volume of the acid or base.
<em>(XMV) HI = (XMV) Ca(OH)₂.</em>
For HI; X = 1, M = ??? M, V = 25.0 mL.
For Ca(OH)₂, X = 2, M = 1.5 M, V = 45.0 mL.
<em>∴ M of HI = (XMV) Ca(OH)₂ / (XV) HI</em> = (2)(1.5 M)(45.0 mL) / (1)(25.0 mL) = <em>5.4 M.</em>
Equation is as follow,
<span> 2 AgNO</span>₃<span> + MgBr</span>₂<span> </span>→ <span>2 AgBr + Mg(NO</span>₃<span>)</span>₂
According to eq.
339.74 g (2 moles) AgNO₃ produces = 375.54 g (2 moles) of AgBr
So,
22.5 g AgNO₃ will produce = X g of AgBr
Solving for X,
X = (22.5 g × 375.54 g) ÷ 339.74 g
X = 24.87 g of AgBr
The answer is a as it is balanced and has the shown molecules