Answer:


Explanation:
<u>Net Force And Acceleration
</u>
The Newton's second law relates the net force applied on an object of mass m and the acceleration it aquires by

The net force is the vector sum of all forces. In this problem, we are not given the magnitude of each force, only their angles. For the sake of solving the problem and giving a good guide on how to proceed with similar problems, we'll assume both forces have equal magnitudes of F=40 N
The components of the first force are


The components of the second force are


The net force is


The magnitude of the net force is


The acceleration has a magnitude of



The direction of the acceleration is the same as the net force:


a) At a position of 2.0m, the Initial energy is
all made up of the potential energy=m*g*hi<span>
and meanwhile at 1.5 all its energy is also potential energy=m*g*hf
The percentage of energy remaining is E=m*g*hi/m*g*hf x 100
and since mass and gravity are constant so it leaves us with
just E=hi/hf
which 1.5/2.0 x100= 75% so we see that we lost 25% of the
energy or 0.25 in fraction
b) Here use the equation vf^2=vi^2+2gd
<span>where g is gravity, vf is the final velocity and vi is the
initial velocity while d is the distance travelled
so in here we are looking for the vi so let us isolate that
variable
we know that at maximum height or peak, the velocity is 0 so
vf is 0
therefore,</span></span>
vi =sqrt(-2gd) <span>
vi =sqrt(-2x-9.81x1.5) </span>
<span>vi =5.4 m/s
<span>c) The energy was converted to heat due to friction with the
air and the ground.</span></span>
The lungs hold air that is taken in. Oxygen gas noticeable all around moves into the blood. The heart pumps to transports this oxygenated blood to cells in the body that need it to deliver vitality.
Answer:
A. 112 J
Explanation:
KE = ½mv² = ½(0.14)40² = 112 J