Answer:
55.9 g KCl.
Explanation:
Hello there!
In this case, according to the definition of molality for the 0.500-molar solution, we need to divide the moles of solute (potassium chloride) over the kilograms of solvent as shown below:

Thus, solving for the moles of solute, we obtain:

Since the density of water is 1 kg/L, we obtain the following moles:

Next, since the molar mass of KCl is 74.5513 g/mol, the mass would be:

Regards!
Answer:
92.65256 cm^3
Explanation:
To find this, we can simply multiply all three dimensions to get the answer in cubic centimeters, and we get the answer above. If you want to be more specific, we can go by the sigfig rule and the answer would be rounded to 93 cm^3.
Answer:
138.19388999999998 grams of silicon dioxide
Answer:
Explanation:
This question seeks to test the knowledge of separation techniques.
From the narration in the question, the first separation to be done is the removal of Iron fillings by the use of magnet (magnetic separation). Since Iron is magnetic, the iron fillings will be attracted by the magnet hence removing the iron fillings from the mixture.
The second constituent to be removed will be the copper pieces by the use of a sieve (sieving). Copper pieces have relatively larger sizes than sand and common salt, hence a sieve (which separates particles based on size) can be used to remove the copper pieces from the mixture.
What will be left in the mixture after the processes above will be salt and water. This mixture will have to be dissolved in water; the salt will dissolve in water while the sand will not. After which, filtration will be done to remove the sand which will be collected on the filter paper as filtride and the salt solution will pass through the filter paper as filtrate.
The salt solution can then be evaporated to dryness to retrieve the solid salt from the solution.
The amount of salt in the mixture can then be measured using a weighing balance.
Some of safety measures to be taken during the course of this experiment includes performing the experiment in an airtight and controlled environment. Lab coat and hand gloves should be worn during the course of the experiment. The evaporation to dryness should not be done close to an inflammable material/substance