Answer:
1777.92 m/s
Explanation:
R = Radius of asteroid = 545 km
M = Mass of planet
g = Acceleration due to gravity = 2.9 m/s²
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
Acceleration due to gravity is given by

The expression of escape velocity is given by

The escape speed is 1777.92 m/s
Answer:
The orbital period of a planet depends on the mass of the planet.
Explanation:
A less massive planet will take longer to complete one period than a more massive planet.
Answer:
Second order line appears at 43.33° Bragg angle.
Explanation:
When there is a scattering of x- rays from the crystal lattice and interference occurs, this is known as Bragg's law.
The Bragg's diffraction equation is :
.....(1)
Here n is order of constructive interference, λ is wavelength of x-ray beam, d is the inter spacing distance of lattice and θ is the Bragg's angle or scattering angle.
Given :
Wavelength, λ = 1.4 x 10⁻¹⁰ m
Bragg's angle, θ = 20°
Order of constructive interference, n =1
Substitute these value in equation (1).

d = 2.04 x 10⁻¹⁰ m
For second order constructive interference, let the Bragg's angle be θ₁.
Substitute 2 for n, 2.04 x 10⁻¹⁰ m for d and 1.4 x 10⁻¹⁰ m for λ in equation (1).


<em>θ₁ </em>= 43.33°
W = force * displacement
W = 32 pounds * 10 feet
Now you need to convert it to newton and meters
W = 142 N * 3.048 m = 434 J
(I approximated the conversions- I hope it helps)
Answer:
Centripetal acceleration.
Explanation:
Centripetal acceleration is a property of a body moving in a uniform circular path and it is directed radially towards the center of the circle in which body is rotating.
The force which causes this acceleration is centripetal force which is also directed towards the center of the circle and pulls the body towards its center.
It is calculated through following formula

where v is velocity and r is the radius of the circle.